Theoretical calculations based on the density functional theory, using the PBE functional with the D3 dispersion correction under periodic boundary conditions, have been employed aiming to investigate the properties of α-, β-, and γ-glycine. Structural parameters have been predicted with a maximum error of 1.42% for lattice parameters and 2.53% for the unit-cell volume, for the α phase. Band structure calculations suggest the band gap values of 4.80, 5.01, and 5.23 eV for the α, β, and γ phases, respectively. Quasi-harmonic calculations have been performed and the Gibbs free energy function has been calculated in a wide range of temperature and pressures, suggesting the stability ordering γ > α > β, at room temperature, and the γ to α-glycine phase transition temperature of 442.55 K, at 1 bar, in agreement with the experimental findings. Moreover, a deviation from the experimental value of only 0.44 J mol–1 K–1 is observed for the predicted S(α→γ) at 298.15 K. Finally, calculated sublimation enthalpies of 140.58, 138.09, and 141.70 kJ mol–1 (α, β, and γ-glycine, respectively), at 298.15 K and 1 bar, have also shown good agreement with the experimental values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.