The thermal pyrolysis of polystyrene (PS) is gaining importance as the social pressure for achieving a circular economy is growing; moreover, the recovery of styrene monomer in such a process is especially relevant. In this study, a simple thermal pyrolysis process in the temperature range of 390–450 °C is developed. A working hypothesis is that by using a nitroxide-end functionalized PS (PS-T or dormant polymer), the initiation process for the production of monomer (unzipping) during the PS pyrolysis could be enhanced due to the tendency of the PS-T to activate at the nitroxide end. Two types of PS were used in this work, the first one was synthesized by free-radical polymerization (FRP-dead polymer) and the second by nitroxide-mediated polymerization (NMP) using three levels of nitroxide to initiator ratio: 1.3, 1.1, and 0.9. Analysis of the recovered products of the pyrolysis by gas-mass spectroscopy shows that the yield of styrene increases from ∼33% in the case of dead polymer to ∼38.5% for PS-T. A kinetic and mathematical model for the pyrolysis of dead and dormant polymer is proposed and solved by the method of moments. After a parameter sensitivity study and data fitting, the model is capable of explaining the main experimental trends observed.
A significantly improved thermal pyrolysis process for polystyrene (PS) is reported and mathematically modeled, including the description of the time evolution of the full molecular weight distribution of the polymer during its degradation by direct integration of the balance equations without simplifications. The process improves the styrene yield from 28–39%, reached in our previous report, to 58–75% by optimizing the heating ramp during the initial stage of the pyrolysis process. The process was tested at 390 and 420 °C on samples of conventional PS synthesized via free-radical polymerization (FRP) and PS with a nitroxide end-functionality synthesized via nitroxide mediated polymerization (NMP) with three levels of the nitroxide to initiator (N/I) molar ratio: 0.9, 1.1 and 1.3. The NMP-PS produced with N/I = 1.3 generates the highest styrene yield (75.2 ± 6.7%) with respect to the best FRP-PS yield (64.9 ± 1.2%), confirming the trends observed in our previous study. The mathematical model corrects some problems of a previous model that was based on assumptions that led to significant errors in the predictions; this is achieved by solving the full molecular weight distribution (MWD) without assumptions. The model provides further insight into the initial stages of the pyrolysis process which seem to be crucial to determine the chemical paths of the process and the styrene yield, as well as the influences of the initial heating ramp used and the presence of a nitroxide end-functionality in the polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.