Mycobacterium tuberculosis is the causative agent of human tuberculosis. The nitric oxide reaction with oxy-truncated hemoglobin N (trHbN) has been proposed to be responsible for the resistance mechanism by which this microorganism can evade the toxic effects of NO. In this work, we explore the molecular basis of the NO detoxification mechanism using a combination of classical and hybrid quantum-classical (QM-MM) simulation techniques. We have investigated the structural flexibility of the protein, the ligand affinity properties, and the nitric oxide reaction with coordinated O2. The analysis of the classical MD trajectory allowed us to identify Phe62 as the gate of the main channel for ligand diffusion to the active site. Moreover, the opening of the channel stems from the interplay between collective backbone motions and local rearrangements in the side chains of the residues that form the bottleneck of the tunnel. Even though the protein environment is not found to make a significant contribution to the heme moiety catalyzed reaction, the binding site influences the physiological function of the enzyme at three different levels. First, by isolating the intermediates formed in the reaction, it prevents nondesired reactions from proceeding. Second, it modulates the ligand (O2, NO) affinity of the protein, which can be ascribed to both distal and proximal effects. Finally, the stabilization of the Tyr33-Gln58 pair upon O2 binding might alter the essential dynamics of the protein, leading in turn to a mechanism for ligand-induced regulation.
PTX3 is an acute phase glycoprotein that plays key roles in resistance to certain pathogens and in female fertility. PTX3 exerts its functions by interacting with a number of structurally unrelated molecules, a capacity that is likely to rely on its complex multimeric structure stabilized by interchain disulfide bonds. In this study, PAGE analyses performed under both native and denaturing conditions indicated that human recombinant PTX3 is mainly composed of covalently linked octamers. The network of disulfide bonds supporting this octameric assembly was resolved by mass spectrometry and Cys to Ser site-directed mutagenesis. Here we report that cysteine residues at positions 47, 49, and 103 in the N-terminal domain form three symmetric interchain disulfide bonds stabilizing four protein subunits in a tetrameric arrangement. Additional interchain disulfide bonds formed by the C-terminal domain cysteines Cys 317 and Cys 318 are responsible for linking the PTX3 tetramers into octamers. We also identified three intrachain disulfide bonds within the C-terminal domain that we used as structural constraints to build a new three-dimensional model for this domain. Previously it has been shown that PTX3 is a key component of the cumulus oophorus extracellular matrix, which forms around the oocyte prior to ovulation, because cumuli from PTX3 ؊/؊ mice show defective matrix organization. Recombinant PTX3 is able to restore the normal phenotype ex vivo in cumuli from PTX3 ؊/؊ mice. Here we demonstrate that PTX3 Cys to Ser mutants, mainly assembled into tetramers, exhibited wild type rescue activity, whereas a mutant, predominantly composed of dimers, had impaired functionality. These findings indicate that protein oligomerization is essential for PTX3 activity within the cumulus matrix and implicate PTX3 tetramers as the functional molecular units required for cumulus matrix organization and stabilization.
The CD3epsilon subunit of the T cell receptor (TCR) complex undergoes a conformational change upon ligand binding that is thought to be important for the activation of T cells. To study this process, we built a molecular dynamics model of the transmission of the conformational change within the ectodomains of CD3. The model showed that the CD3 dimers underwent a stiffening effect that was funneled to the base of the CD3epsilon subunit. Mutation of two relevant amino acid residues blocked transmission of the conformational change and the differentiation and activation of T cells. Furthermore, this inhibition occurred even in the presence of excess endogenous CD3epsilon subunits. These results emphasize the importance of the conformational change in CD3epsilon for the activation of T cells and suggest the existence of unforeseen cooperativity between TCR complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.