Bone metastases represents a common cause of morbidity in patients suffering many types of cancer: breast, lung, kidney, prostate, and multiple myeloma. Osteolytic metastases often cause severe pain, pathologic fractures, hypercalcemia, spinal cord compression, and other nerve-compression syndromes. Osteoclasts (OCs), cells deriving from granulocitic-macrophagic lineage, are responsible for osteolysis, which may be reduced by inhibiting both OCs formation and activity. By studying bone osteolytic metastases mechanism in solid tumors, we report here our findings that cancer patients with bone involvement display an increase in osteoclasts precursors, compared with both healthy controls and cancer patients without bone metastases. Peripheral blood mononuclear cells (PBMCs) from patients with osteolytic lesions show osteoclastogenesis without adding M-CSF, RANKL, or TNF-alpha. However, these factors are necessary to generate OCs from healthy donors, non-osteolytic patient PBMCs and T-cell depleted PBMCs. OCs derived from cancer patients show more resorption pits than OCs from healthy donors and express genes involved in osteoclastogenesis. Our data show that a spontaneous osteoclastogenesis occurs in patients affected by osteolytic lesions and may be supported by factors released by T lymphocytes. These factors could give a priming to osteoclast precursors and promote osteoclastogenesis. In fact, T-cell depleted PBMCs do not differentiate into OCs without adding M-CSF and RANKL. Moreover, we do not obtain a higher number of OCs by increasing RANKL doses in cultures, and OCs and T lymphocytes mRNA level are detected for TNF-alpha but not for RANKL. The addition of OPG to PBMCs cultures do not modify spontaneous osteoclastogenesis. A neutralizing anti-TNF-alpha antibody in unstimulated PBMC cultures of osteolytic cancer patients induces an inhibition of osteoclastogenesis. These data suggest that TNF-alpha may be responsible for osteoclastogenesis in these tumors.
Stage B patients with a small number of examined nodes may be understaged. Thus, these patients might be considered for adjuvant therapy because of their poorer life expectancy than other stage B patients. For stage C patients, the number of recovered nodes does not seem to affect long-term outcome.
BackgroundInterleukin-7 (IL-7) is a potent regulator of lymphocyte development, which has also significant effects on bone; in fact it is a potent osteoclastogenic factor. Some human solid tumors produce high IL-7 levels, suggesting a potential IL-7 role on tumor development and progression.MethodologyWe studied 50 male patients affected by solid tumors, and their blood samples were collected at tumor diagnosis. PBMCs were isolated and cultured with/without IL-7 to study its influence on osteoclastogenesis. Serum and cell culture supernatant IL-7 levels were measured by ELISA. The quantitative analysis of IL-7 expression on T and B cells was performed by Real-Time PCR.Principal FindingsSerum IL-7 levels were highest in osteolytic cancer patients, followed by cancer patients without bone lesions, and then healthy controls. We showed the IL-7 production in PBMC cultures and particularly in monocyte and B cell co-cultures. A quantitative analysis of IL-7 expression in T and B cells confirmed that B cells had a high IL-7 expression. In all cell culture conditions, IL-7 significantly increased osteoclastogenesis and an anti-IL-7 antibody inhibited it. We demonstrated that IL-7 supports OC formation by inducing the TNF-α production and low RANKL levels, which synergize in promoting osteoclastogenesis.ConclusionsWe demonstrated the presence of high serum IL-7 levels in patients with bone metastasis, suggesting the use of serum IL-7 level as a clinical marker of disease progression and of bone involvement. Moreover, we showed the capability of IL-7 to stimulate spontaneous osteoclastogenesis of bone metastatic patients and to induce osteoclastogenesis in cancer patients without bone involvement. These findings add further details to the disclosure of the mechanisms controlling bone metastasis in solid tumors.
Prognosis and treatment effectiveness of medullary thyroid carcinoma (MTC) are largely related to the tumour stage, so that early diagnosis represents an important goal for the management of patients. Recent advances in genetic testing have improved the clinical approach to the familial MTC syndromes. There is general agreement that the primary operation for MTC should obtain the complete removal of the neoplastic tissue in the neck, because any adjuvant treatment has never been proven to be effective. The management of residual/recurrent or metastatic MTC still remains controversial, although a multimodal approach to advanced disease may be of value in palliation or local control of tumour progression. The role of surgery, external radiotherapy, radionuclide therapy and medical treatment, including biological response modifiers and cytotoxic drugs, are reviewed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.