Isolated microgrids are microgrids which operate autonomously. This paper presents an isolated microgrid which combines a Hydraulic Turbine Generator (HTG) with a Wind Turbine Generator (WTG) to supply consumers forming a Wind Hydro Isolated Microgrid (WHIM). The WHIM includes a Dump Load (DL) to dissipate the active power excess. The WHIM has been modeled and its operation has been simulated in two modes: Wind-Hydro (WH), where both HTG and WTG supply power, and Wind-Only (WO) mode, where the WTG is the active power supplier and the HTG keeps connected to the grid with null power to generate the grid voltage. In WO, a fast frequency regulation is achieved by means of a controller which commands the DL to consume the WTG power excess. Additionally, the simulation of the mode transition from WO to WH, which is triggered by a system active power deficit in WO mode, is shown. A kick starting system designed to speed up the HTG power production improves the transient from WO to WH mode change. Finally, the simulations in WH mode show the interaction between the HTG and WTG. The two controls proposed have been proved effective and the simulations show a good WHIM dynamic performance.
A fully reliable and efficient adaptive control methodology has been long awaited in industry due to the time-varying nature of industrial plants. This paper demonstrates that this kind of adaptive solution is now available and simple to apply by presenting the first application of a methodology called Adaptive Predictive Expert (ADEX) Control in a petrochemical production unit. A description of the plant and the ADEX solution is followed by a comparative analysis of the results obtained with those of the existing conventional PID control. The objectives of the application involving the naphtha splitter at the Puertollano Refinery of Repsol were to establish the viability of ADEX in this environment, increase the quality of the naphtha products by achieving closer compliance with desired specification and maximizing the economic yield. To achieve these objectives it was necessary to enhance the stability of the naphtha splitter by improving control of the principal variables and eliminating a degree of interaction between them which was causing a resonance problem in the column. The application of the ADEX system confirm its viability, demonstrated a marked increase in column stability, significant improvements in levels of control and the elimination of the resonance problems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.