There exist a wide variety of network design problems that require a traffic matrix as input in order to carry out performance evaluation. The research community has not had at its disposal any information about how to construct realistic traffic matrices. We introduce here the two basic problems that need to be addressed to construct such matrices. The first is that of synthetically generating traffic volume levels that obey spatial and temporal patterns as observed in realistic traffic matrices. The second is that of assigning a set of numbers (representing traffic levels) to particular node pairs in a given topology. This paper provides an in-depth discussion of the many issues that arise when addressing these problems. Our approach to the first problem is to extract statistical characteristics for such traffic from real data collected inside two large IP backbones. We dispel the myth that uniform distributions can be used to randomly generate numbers for populating a traffic matrix. Instead, we show that the lognormal distribution is better for this purpose as it describes well the mean rates of origin-destination flows. We provide estimates for the mean and variance properties of the traffic matrix flows from our datasets. We explain the second problem and discuss the notion of a traffic matrix being well-matched to a topology. We provide two initial solutions to this problem, one using an ILP formulation that incorporates simple and well formed constraints. Our second solution is a heuristic one that incorporates more challenging constraints coming from carrier practices used to design and evolve topologies.
Network operators need to have a clear visibility into the applications running in their network. This is critical for both security and network management. Recent years have seen an exponential growth in the number of smart phone apps which has complicated this task. Traditional methods of traffic classification are no longer sufficient as the majority of this smart phone app traffic is carried over HTTP/HTTPS. Keeping up with the new applications that come up everyday is very challenging and time-consuming. We present a novel technique for automatically generating network profiles for identifying Android apps in the HTTP traffic. A network profile consists of fingerprints, i.e., unique characteristics of network behavior, that can be used to identify an app. To profile an Android app, we run the app automatically in an emulator and collect the network traces. We have developed a novel UI fuzzing technique for running the app such that different execution paths are exercised, which is necessary to build a comprehensive network profile. We have also developed a light-weight technique, for extracting fingerprints, that is based on identifying invariants in the generated traces. We used our technique to generate network profiles for thousands of apps. Using our network profiles we were able to detect the presence of these apps in real-world network traffic logs from a cellular provider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.