A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.For more information, please contact eprints@nottingham.ac.uk
By studying perturbations about the vacuum, we show that Hořava gravity suffers from two different strong coupling problems, extending all the way into the deep infra-red. The first of these is associated with the principle of detailed balance and explains why solutions to General Relativity are typically not recovered in models that preserve this structure. The second of these occurs even without detailed balance and is associated with the breaking of diffeomorphism invariance, required for anisotropic scaling in the UV. Since there is a reduced symmetry group there are additional degrees of freedom, which need not decouple in the infra-red. Indeed, we use the Stuckelberg trick to show that one of these extra modes become strongly coupled as the parameters approach their desired infra-red fixed point. Whilst we can evade the first strong coupling problem by breaking detailed balance, we cannot avoid the second, whatever the form of the potential. Therefore the original Hořava model, and its "phenomenologically viable" extensions do not have a perturbative General Relativity limit at any scale. Experiments which confirm the perturbative gravitational wave prediction of General Relativity, such as the cumulative shift of the periastron time of binary pulsars, will presumably rule out the theory.
We propose a very simple reformulation of General Relativity, which completely sequesters from gravity all of the vacuum energy from a matter sector, including all loop corrections and renders all contributions from phase transitions automatically small. The idea is to make the dimensional parameters in the matter sector functionals of the 4-volume element of the universe. For them to be nonzero, the universe should be finite in spacetime. If this matter is the Standard Model of particle physics, our mechanism prevents any of its vacuum energy, classical or quantum, from sourcing the curvature of the universe. The mechanism is consistent with the large hierarchy between the Planck scale, electroweak scale and curvature scale, and early universe cosmology, including inflation. Consequences of our proposal are that the vacuum curvature of an old and large universe is not zero, but very small, that w DE ≃ −1 is a transient, and that the universe will collapse in the future.
We systematically explore the spectrum of gravitational perturbations in codimension-1 DGP braneworlds, and find a 4D ghost on the self-accelerating branch of solutions. The ghost appears for any value of the brane tension, although depending on the sign of the tension it is either the helicity-0 component of the lightest localized massive tensor of mass 0 < m 2 < 2H 2 for positive tension, the scalar 'radion' for negative tension, or their admixture for vanishing tension. Because the ghost is gravitationally coupled to the brane-localized matter, the self-accelerating solutions are not a reliable benchmark for cosmic acceleration driven by gravity modified in the IR. In contrast, the normal branch of solutions is ghost-free, and so these solutions are perturbatively safe at large distance scales. We further find that when the Z 2 orbifold symmetry is broken, new tachyonic instabilities, which are much milder than the ghosts, appear on the self-accelerating branch. Finally, using exact gravitational shock waves we analyze what happens if we relax boundary conditions at infinity. We find that non-normalizable bulk modes, if interpreted as 4D phenomena, may open the door to new ghost-like excitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.