Valladolid-Acebes I, Merino B, Principato A, Fole A, Barbas C, Lorenzo MP, García A, Del Olmo N, Ruiz-Gayo M, Cano V. High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission. Am J Physiol Endocrinol Metab 302: E396 -E402, 2012. First published November 22, 2011; doi:10.1152/ajpendo.00343.2011.-Obesity and high-fat (HF) diets have a deleterious impact on hippocampal function and lead to impaired synaptic plasticity and learning deficits. Because all of these processes need an adequate glutamatergic transmission, we have hypothesized that nutritional imbalance triggered by these diets might eventually concern glutamate (Glu) neural pathways within the hippocampus. Glu is withdrawn from excitatory synapses by specific uptake mechanisms involving neuronal (EAAT-3) and glial (GLT-1, GLAST) transporters, which regulate the time that synaptically released Glu remains in the extracellular space and, consequently, the duration and location of postsynaptic receptor activation. The goal of the present study was to evaluate in mouse hippocampus the effect of a short-term high-fat dietary treatment on 1) Glu uptake kinetics, 2) the density of Glu carriers and Glu-degrading enzymes, 3) the density of Glu receptor subunits, and 4) synaptic transmission and plasticity. Here, we show that HF diet triggers a 50% decrease of the Michaelis-Menten constant together with a 300% increase of the maximal velocity of the uptake process. Glial Glu carriers GLT-1 and GLAST were upregulated in HF mice (32 and 27%, respectively), whereas Glu-degrading enzymes glutamine synthase and GABA-decarboxilase appeared to be downregulated in these animals. In addition, HF diet hippocampus displayed diminished basal synaptic transmission and hindered NMDAinduced long-term depression (NMDA-LTD). This was coincident with a reduced density of the NR2B subunit of NMDA receptors. All of these results are compatible with the development of leptin resistance within the hippocampus. Our data show that HF diets upregulate mechanisms involved in Glu clearance and simultaneously impair Glu metabolism. Neurochemical changes occur concomitantly with impaired basal synaptic transmission and reduced NMDA-LTD. Taken together, our results suggest that HF diets trigger neurochemical changes, leading to a desensitization of NMDA receptors within the hippocampus, which might account for cognitive deficits. obesity; electrophysiology; learning; long-term depression; glutamate uptake; leptin resistance GLUTAMATE (Glu) uptake is a pivotal process regulating excitatory transmission within the central nervous system, and its efficacy accounts for the time that released Glu remains in the extracellular space and, consequently, the duration of postsynaptic receptor activation. Glu uptake is carried out by specific neuronal (EAAT-3) and glial (GLT-1, GLAST) transporters, which display dynamic processes aimed at improving Glu clearance under conditions leading to increased release of Glu (27, 34). Impairment of Glu uptake due to brain injury (24, 28...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.