Tetraphenylethylene is a prototypical example of a molecule displaying aggregation-induced emission. Despite many studies on the optical properties of TPE and its derivatives, the origin of the non-emissive behavior in the gas phase or in dilute solutions has yet to be unravelled. Here, we identify the ultrafast deactivation mechanisms responsible for the fluorescence quenching in isolated TPE.
The
description of low-lying ππ* states of linear acenes
by standard electronic structure methods is known to be challenging.
Here, we broaden the framework of this problem by considering a set
of fused heteroaromatic rings and demonstrate that standard electronic
structure methods do not provide a balanced description of the two
(typically) lowest singlet state (La and Lb)
excitations. While the Lb state is highly sensitive to
correlation effects, La suffers from the same drawbacks
as charge transfer excitations. We show that the comparison between
CIS/CIS(D) can serve as a diagnostic for detecting the two problematic
excited states. Standard TD-DFT and even its spin-flip variant lead
to inaccurate excitation energies and interstate gaps, with only a
double hybrid functional performing somewhat better. The complication
inherent to a balanced description of these states is so important
that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.
The computational elucidation and proper description of the ultrafast deactivation mechanisms of simple organic electronic units, such as thiophene and its oligomers, is as challenging as it is contentious. A comprehensive excited state dynamics analysis of these systems utilizing reliable electronic structure approaches is currently lacking, with earlier pictures of the photochemistry of these systems being conceived based upon high-level static computations or lower level dynamic trajectories. Here a detailed surface hopping molecular dynamics of thiophene and bithiophene using the algebraic diagrammatic construction to second order (ADC(2)) method is presented. Our findings illustrate that ring puckering plays an important role in thiophene photochemistry and that the photostability increases when going upon dimerization into bithiophene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.