Background: The study of the attentional system remains a challenge for current neuroscience. The “Attention Network Test” (ANT) was designed to study simultaneously three different attentional networks (alerting, orienting, and executive) based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event related potentials (ERPs) and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioral measures.Results: This study shows that there is a basic level of alerting (tonic alerting) in the no cue (NC) condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the NC condition; a late modulation triggered by the central cue (CC) condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue (SC) condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1.Conclusions: The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human subjects.
In aviation, emotion and cognitive workload can considerably increase the probability of human error. An accurate online physiological monitoring of pilot's mental state could prevent accidents. The heart rate (HR) and heart rate variability (HRV) of 21 private pilots were analysed during two realistic flight simulator scenarios. Emotion was manipulated by a social stressor and cognitive workload with the difficulty of a secondary task. Our results confirmed the sensitivity of the HR to cognitive demand and training effects, with increased HR when the task was more difficult and decreased HR with training (time-on-task). Training was also associated with an increased HRV, with increased values along the flight scenario time course. Finally, the social stressor seemed to provoke an emotional reaction that enhanced motivation and performance on the secondary task. However, this was not reflected by the cardiovascular activity.
BackgroundSome controversy remains about the potential applicability of cognitive potentials for evaluating the cerebral activity associated with cognitive capacity. A fundamental requirement is that these neurophysiological parameters show a high level of stability over time. Previous studies have shown that the reliability of diverse parameters of the P3 component (latency and amplitude) ranges between moderate and high. However, few studies have paid attention to the retest reliability of the P3 topography in groups or individuals. Considering that changes in P3 topography have been related to different pathologies and healthy aging, the main objective of this article was to evaluate in a longitudinal study (two sessions) the reliability of P3 topography in a group and at the individual level.ResultsThe correlation between sessions for P3 topography in the grand average of groups was high (r = 0.977, p<0.001). The within-subject correlation values ranged from 0.626 to 0.981 (mean: 0.888). In the between-subjects topography comparisons, the correlation was always lower for comparisons between different subjects than for within-subjects correlations in the first session but not in the second session.ConclusionsThe present study shows that P3 topography is highly reliable for group analysis (comprising the same subjects) in different sessions. The results also confirmed that retest reliability for individual P3 maps is suitable for follow-up studies for a particular subject. Moreover, P3 topography appears to be a specific marker considering that the between-subjects correlations were lower than the within-subject correlations. However, P3 topography appears more similar between subjects in the second session, demonstrating that is modulated by experience. Possible clinical applications of all these results are discussed.
Research works on operator monitoring underline the benefit of taking into consideration several signal modalities to improve accuracy for an objective mental state diagnosis. Heart rate (HR) is one of the most utilized systemic measures to assess cognitive workload (CW), whereas, respiration parameters are hardly utilized. This study aims at verifying the contribution of analyzing respiratory signals to extract features to evaluate driver’s activity and CW variations in driving. Eighteen subjects participated in the study. The participants carried out two different cognitive tasks requiring different CW demands, a single task as well as a competing cognitive task realized while driving in a simulator. Our results confirm that both HR and breathing rate (BR) increase in driving and are sensitive to CW. However, HR and BR are differently modulated by the CW variations in driving. Specifically, HR is affected by both driving activity and CW, whereas, BR is suitable to evidence a variation of CW only when driving is not required. On the other hand, spectral features characterizing respiratory signal could be also used similarly to HR variability indices to detect high CW episodes. These results hint the use of respiration as an alternative to HR to monitor the driver mental state in autonomic vehicles in order to predict the available cognitive resources if the user has to take over the vehicle.
BackgroundA considerable percentage of multiple sclerosis patients have attentional impairment, but understanding its neurophysiological basis remains a challenge. The Attention Network Test allows 3 attentional networks to be studied. Previous behavioural studies using this test have shown that the alerting network is impaired in multiple sclerosis. The aim of this study was to identify neurophysiological indexes of the attention impairment in relapsing-remitting multiple sclerosis patients using this test.ResultsAfter general slowing had been removed in patients group to isolate the effects of each condition, some behavioral differences between them were obtained. About Contingent Negative Variation, a statistically significant decrement were found in the amplitude for Central and Spatial Cue Conditions for patient group (p<0.05). ANOVAs showed for the patient group a significant latency delay for P1 and N1 components (p<0.05) and a decrease of P3 amplitude for congruent and incongruent stimuli (p<0.01). With regard to correlation analysis, PASAT-3s and SDMT showed significant correlations with behavioral measures of the Attention Network Test (p<0.01) and an ERP parameter (CNV amplitude).ConclusionsBehavioral data are highly correlated with the neuropsychological scores and show that the alerting and orienting mechanisms in the patient group were impaired. Reduced amplitude for the Contingent Negative Variation in the patient group suggests that this component could be a physiological marker related to the alerting and orienting impairment in relapsing-remitting multiple sclerosis. P1 and N1 delayed latencies are evidence of the demyelination process that causes impairment in the first steps of the visual sensory processing. Lastly, P3 amplitude shows a general decrease for the pathological group probably indexing a more central impairment. These results suggest that the Attention Network Test give evidence of multiple levels of attention impairment, which could help in the assessment and treatment of relapsing-remitting multiple sclerosis patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.