The interactions between bovine serum albumin (BSA) and gemini surfactants derived from cystine have been investigated and were compared with the conventional single-chain surfactant derived from cysteine. The influence of the stereochemistry of the gemini surfactant on its behavior toward BSA was also investigated, as well as the effects of pH and temperature. Electrical conductivity and surface tension measurements were used to obtain important system parameters such as critical aggregation concentration (cac), polymer saturation point (psp), degree of ionization (alpha), and the amount of surfactant binding to protein (M). Stereochemistry was found to influence the surface properties of the surfactants studied and their interaction with BSA but not their micellar properties in solution.
New anionic urea-based surfactants derived from alpha,omega-amino acids and in particular from beta-alanine were synthesized and their solution properties characterized by electrical conductivity, equilibrium surface tension, and steady-state fluorescence spectroscopy techniques. Double-chain surfactants and the single-chain surfactant containing a sulfate head group exhibited the lowest critical micelle concentration (cmc) values and superior efficiency in lowering surface tension. All surfactants promoted adsorption relative to micellization, and micellar parameters were sensitive to the hydrophobicity of the amino acid residue. The polarity of the interfacial region, measured with the solvatochromic probe E(T)(30) (Reichardt's betaine dye), was similar to sodium dodecyl sulfate (SDS) micelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.