We present a deep neural network-based methodology for synthesising percussive sounds with control over high-level timbral characteristics of the sounds. This approach allows for intuitive control of a synthesizer, enabling the user to shape sounds without extensive knowledge of signal processing. We use a feedforward convolutional neural networkbased architecture, which is able to map input parameters to the corresponding waveform. We propose two datasets to evaluate our approach on both a restrictive context, and in one covering a broader spectrum of sounds. The timbral features used as parameters are taken from recent literature in signal processing. We also use these features for evaluation and validation of the presented model, to ensure that changing the input parameters produces a congruent waveform with the desired characteristics. Finally, we evaluate the quality of the output sound using a subjective listening test. We provide sound examples and the system's source code for reproducibility.
Music loops are essential ingredients in electronic music production, and there is a high demand for pre-recorded loops in a variety of styles. Several commercial and community databases have been created to meet this demand, but most are not suitable for research due to their strict licensing. We present the Freesound Loop Dataset (FSLD), a new large-scale dataset of music loops annotated by experts. The loops originate from Freesound, a community database of audio recordings released under Creative Commons licenses, so the audio in our dataset may be redistributed. The annotations include instrument, tempo, meter, key and genre tags. We describe the methodology used to assemble and annotate the data, and report on the distribution of tags in the data and inter-annotator agreement. We also present to the community an online loop annotator tool that we developed. To illustrate the usefulness of FSLD, we present short case studies on using it to estimate tempo and key, generate music tracks, and evaluate a loop separation algorithm. We anticipate that the community will find yet more uses for the data, in applications from automatic loop characterisation to algorithmic composition.
No abstract
Loops, seamlessly repeatable musical segments, are a cornerstone of modern music production. Contemporary artists often mix and match various sampled or pre-recorded loops based on musical criteria such as rhythm, harmony and timbral texture to create compositions. Taking such criteria into account, we present LoopNet, a feed-forward generative model for creating loops conditioned on intuitive parameters. We leverage Music Information Retrieval (MIR) models as well as a large collection of public loop samples in our study and use the Wave-U-Net architecture to map control parameters to audio. We also evaluate the quality of the generated audio and propose intuitive controls for composers to map the ideas in their minds to an audio loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.