Different demographic, clinical and laboratory variables have been related to the severity and mortality following SARS-CoV-2 infection. Most studies applied traditional statistical methods and in some cases combined with a machine learning (ML) method. This is the first study to date to comparatively analyze five ML methods to select the one that most closely predicts mortality in patients admitted with COVID-19. The aim of this single-center observational study is to classify, based on different types of variables, adult patients with COVID-19 at increased risk of mortality. SARS-CoV-2 infection was defined by a positive reverse transcriptase PCR. A total of 203 patients were admitted between March 15 and June 15, 2020 to a tertiary hospital. Data were extracted from the electronic medical record. Four supervised ML algorithms (k-nearest neighbors (KNN), decision tree (DT), Gaussian naïve Bayes (GNB) and support vector machine (SVM)) were compared with the eXtreme Gradient Boosting (XGB) method proposed to have excellent scalability and high running speed, among other qualities. The results indicate that the XGB method has the best prediction accuracy (92%), high precision (>0.92) and high recall (>0.92). The KNN, SVM and DT approaches present moderate prediction accuracy (>80%), moderate recall (>0.80) and moderate precision (>0.80). The GNB algorithm shows relatively low classification performance. The variables with the greatest weight in predicting mortality were C reactive protein, procalcitonin, glutamyl oxaloacetic transaminase, glutamyl pyruvic transaminase, neutrophils, D-dimer, creatinine, lactic acid, ferritin, days of non-invasive ventilation, septic shock and age. Based on these results, XGB is a solid candidate for correct classification of patients with COVID-19.
Among the IL-6 inhibitors, tocilizumab is the most widely used therapeutic option in patients with SARS-CoV-2-associated severe respiratory failure (SRF). The aim of our study was to provide evidence on predictors of poor outcome in patients with COVID-19 treated with tocilizumab, using machine learning (ML) techniques. We conducted a retrospective study, analyzing the clinical, laboratory and sociodemographic data of patients admitted for severe COVID-19 with SRF, treated with tocilizumab. The extreme gradient boost (XGB) method had the highest balanced accuracy (93.16%). The factors associated with a worse outcome of tocilizumab use in terms of mortality were: baseline situation at the start of tocilizumab treatment requiring invasive mechanical ventilation (IMV), elevated ferritin, lactate dehydrogenase (LDH) and glutamate-pyruvate transaminase (GPT), lymphopenia, and low PaFi [ratio between arterial oxygen pressure and inspired oxygen fraction (PaO2/FiO2)] values. The factors associated with a worse outcome of tocilizumab use in terms of hospital stay were: baseline situation at the start of tocilizumab treatment requiring IMV or supplemental oxygen, elevated levels of ferritin, glutamate-oxaloacetate transaminase (GOT), GPT, C-reactive protein (CRP), LDH, lymphopenia, and low PaFi values. In our study focused on patients with severe COVID-19 treated with tocilizumab, the factors that were weighted most strongly in predicting worse clinical outcome were baseline status at the start of tocilizumab treatment requiring IMV and hyperferritinemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.