Aims Roux-en-Y gastric bypass (RYGB) is one of the most effective surgical therapies for the rapid resolution of type 2 diabetes. However, the mechanisms underlying the entero-hormonal response after surgery and the role of peptide tyrosine tyrosine (PYY) in the restoration of normoglycemia are still not clear. Methods We reproduced the RYGB technique in Wistar and Goto-Kakizaki rats and performed serum hormonal, histological, and hormonal-infusion test. Results Using the diabetic Goto-Kakizaki (GK) rat model, we demonstrated that PYY plasma levels showed a remarkable peak approximately 30 min earlier than GLP-1 or GIP after mixed-meal administration in RYGB-operated rats with PYY. The GLP-1 and GIP areas under the curve (AUCs) increased after RYGB in GK rats. Additionally, the findings suggested that PYY (3-36) infusion led to increased GLP-1 and GIP plasma levels close to those obtained after a meal. Finally, the number of GLP-1positive cells appeared to increase in the three segments of the small intestine in GK-RYGB-operated rats beyond the early presence of nutrient stimulation in the ileum. Nevertheless, PYY-positive cell numbers appeared to increase only in the ileum. Conclusion At least in rats, these data demonstrate an earlier essential role for PYY in gut hormone regulation after RYGB. We understand that PYY contributes to GLP-1 and GIP release and there must be the existence of enteroendocrine communication routes between the distal and proximal small intestine.
Purpose
Many studies about bariatric surgery have analyzed the effect of sleeve gastrectomy (SG) on glucose improvement, beta-cell mass, and islet size modification. The effects of SG on the other endocrine cells of the pancreas, such as the alpha-cell population, and their regulatory mechanisms remain less studied.
Materials and Methods
We focused our work on the changes in the alpha-cell population after SG in a healthy model of Wistar rats. We measured alpha-cell mass, glucose tolerance, and insulin release after oral glucose tolerance tests and plasma glucagon secretion patterns after insulin infusion. Three Wistar rat groups were employed: SG-operated, surgical control (Sham), and fasting control.
Results
The results obtained showed significant increases in the alpha-cell population after SG. The result was an increase in beta-cell transdifferentiation; it was shown by some expressed molecules (the loss of expression of Pdx-1 and the increase in Arx and Pax6 cells/mm2 of islet). The serum results were enhanced plasma glucagon secretion pattern after insulin infusion assays and normal glucose tolerance and insulin release after OGTT.
Conclusion
We concluded that SG leads to an expansion of the alpha-cell population, at expense of beta-cell; this expansion of alpha-cells is related to transdifferentiation. Plasma glucose level was not affected due to an increased glucagon response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.