Abstract:In November 2011, an Atlantic depression affected the Mediterranean basin, eventually evolving into a Tropical-Like Cyclone (TLC or Mediterranean Hurricane, usually designated as Medicane). In the region affected by the Medicane, mean sea level pressures down to 990 hPa, wind speeds of hurricane intensity close to the eye (around 115 km/h) and intense rainfall in the prefrontal zone were reported. The intensity of this event, together with its long permanence over the sea, suggested its suitability as a paradigmatic case for investigating the sensitivity of a numerical modeling system to different configurations, air-sea interface parameterizations and coupling approaches. Toward this aim, a set of numerical experiments with different parameterization schemes and levels of coupling complexity was carried out within the Coupled Ocean Atmosphere Wave Sediment Transport System (COAWST), which allows the description of air-sea dynamics by coupling an atmospheric model (WRF), an ocean circulation model (ROMS), and a wave model (SWAN). The sensitivity to different initialization times and Planetary Boundary Layer (PBL) parameterizations was firstly investigated by running a set of WRF standalone (atmospheric-only) simulations. In order to better understand the effect of coupling on the TLC formation, intensification and trajectory, different configurations of atmosphere-ocean coupling were subsequently tested, eventually including the full coupling among atmosphere, ocean and waves, also changing the PBL parameterization and the formulation of the surface roughness. Results show a strong sensitivity of both the trajectory and the intensity of this TLC to the initial conditions, while the tracks and intensities provided by the coupled modeling approaches explored in this study do not introduce drastic modifications with respect to those resulting from a fine-tuned standalone atmospheric run, though they provide by definition a better physical and energetic consistency. Nevertheless; the use of different schemes for the calculation of the surface roughness from wave motion, which reflects the description of air-sea interface processes, can significantly affect the results in the fully coupled runs.
The evolution of coastal and transitional environments depends upon the interplay of human activities and natural drivers, two factors that are strongly connected and many times conflicting. The urge for efficient tools for characterising and predicting the behaviour of such systems is nowadays particularly pressing, especially under the effects of a changing climate, and requires a deeper understanding of the connections among different drivers and different scales. To this aim, the present paper reviews the results of a set of interdisciplinary and coordinated experiences carried out in the Adriatic Sea (north-eastern Mediterranean region), discussing state-of-the art methods for coastal dynamics assessment and monitoring, and suggests strategies towards a more efficient coastal management. Coupled with detailed geomorphological information, the methodologies currently available for evaluating the different components of relative sea level rise facilitate a first identification of the flooding hazard in coastal areas, providing a fundamental element for the prioritization and identification of the sustainability of possible interventions and policies. In addition, hydro-and morpho-dynamic models are achieving significant advances in terms of spatial resolution and physical insight, also in a climatological context, improving the description of the interactions between meteooceanographic processes at the regional scale to coastal dynamics at the local scale. We point out that a coordinated use of the described tools should be promptly promoted in the design of survey and monitoring activities as well as in the exploitation of already collected data. Moreover, expected benefits from this strategy include the production of services and infrastructures for coastal protection with a focus on short-term forecast and rapid response, enabling the implementation of an event-oriented sampling strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.