One- and two-photon circular dichroism spectra of R-(+)-3-methyl-cyclopentanone, a system that has been the subject of recent experimental studies of (2+1) resonance-enhanced multiphoton ionization circular dichroism, have been calculated with an origin-invariant density functional theory approximation in the region of the lowest electronic excited states, both for the gas phase and for a selection of solvents. A polarizable continuum model is used in the calculations performed on the solvated system. Two low-lying conformers are analyzed, and a comparison of the intensities and characteristic features is made with the corresponding two-photon absorption for each species, also for the Boltzmann-averaged spectra. The effect of the choice of geometry, basis set, and exchange-correlation functional is carefully analyzed. It is found that a density functional theory approach using the Coulomb attenuating method variant of Becke's three-parameter exchange and the Lee-Yang-Parr correlation functionals with correlation-consistent basis sets of double-zeta quality can reproduce the experimental electronic circular dichroism spectra very well. The features appearing in experiment are characterized in terms of molecular excitations, and the differences in the response of each state in the one- and two-photon processes are highlighted.
The vibrationally resolved electronic circular dichroism (ECD) spectra of the two dominant conformers of (R)-(+)-3-methylcyclopentanone in gas phase are computed by density functional response theory, with a full account of Franck-Condon and Herzberg-Teller vibrational contributions at the harmonic level. Proper inclusion of the latter contributions was made possible by the recent implementation of effective-scaling computations of vibrational overlaps and of analytical gradients of time dependent DFT. The Coulomb-attenuated Becke three parameters Lee-Yang-Parr (CAM-B3LYP) functional reproduces both the position and the intensity of the experimental peaks, providing a remarkable improvement over the spectra obtained with the popular hybrid B3LYP functional, and allowing a confident assignment of the CD fine vibrational structure. Franck-Condon and Herzberg-Teller contributions are discussed in detail. The computed decrease of the CD intensity in the gas phase upon increase of the temperature of the sample follows the trend observed experimentally in different solvents.
The natural optical activity of two chiral amino acids, alanine and proline, has been calculated using Hartree−Fock and density-functional theory with the Becke three-parameter Lee−Yang−Parr (B3LYP) functional employing analytical response theory. The dependence of the optical activity on the molecular conformation in the gas phase was investigated. In the case of proline, calculations were also carried out for the protonated and deprotonated molecules. The increase of the optical rotation of proline with increasing pH, found experimentally, is reproduced by our calculations. The optical rotation of both amino acids is found to be very sensitive to the molecular geometry, to the extent that it changes sign for the different conformers. For alanine, the sign of the optical rotation varies with the rotation of the amino or carbonyl groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.