Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%–5% of total chromatin-associated nucleic acids, are polyA− and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s) are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with α-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.
We have previously shown that transcription from a Xenopus 5S rRNA gene assembled into chromatin in vitro can be repressed in the absence of histone H1 at high nucleosome densities (one nucleosome per 160 base pairs of DNA) (A. Shimamura, D. Tremethick, and A. Worcel, Mol. Cell. Biol. 8:4257-4269, 1988). We report here that transcriptional repression may also be achieved at lower nucleosome densities (one nucleosome per 215 base pairs of DNA) when histone H1 is present. Removal of histone H1 from the minichromosomes with Biorex under conditions in which no nucleosome disruption was observed led to transcriptional activation. Transcriptional repression could be restored by adding histone H1 back to the H1-depleted minichromosomes. The levels of histone H1 that repressed the H1-depleted minichromosomes failed to repress transcription from free DNA templates present in trans. The assembly of transcription complexes onto the H1-depleted minichromosomes protected the 5S RNA gene from inactivation by histone H1.
The ability of T7 RNA polymerase to transcribe a plasmid DNA in vitro in its linear, supercoiled, relaxed and knotted forms was analysed. Similar levels of transcription were found on each template with the exception of plasmids showing varying degrees of knotting (obtained using stoichiometric amounts of yeast topoisomerase II). A purified fraction of knotted DNA with a high number of nodes (crosses) was found to be refractory to transcription. The unknotting of the knotted plasmids, using catalytic amounts of topoisomerase II, restored their capacity as templates for transcription to levels similar to those obtained for the other topological forms. These results demonstrate that highly knotted DNA is the only topological form of DNA that is not a template for transcription. We suggest that the regulation of transcription, which depends on the topological state of the template, might be related to the presence of knotted DNA with different number of nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.