Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).
Climate-driven sectoral applications commonly require different types of climate data (e.g. observations, reanalysis, climate change projections) from different providers. Data access, harmonization and post-processing (e.g. bias correction) are time-consuming error-prone tasks requiring different specialized software tools at each stage of the data workflow, thus hindering reproducibility. Here we introduce climate4R, an R-based climate services oriented framework tailored to the needs of the vulnerability and impact assessment community that integrates in the same computing environment harmonized data access, post-processing, visualization and a provenance metadata model for traceability and reproducibility of results. climate4R allows accessing local and remote (OPeNDAP) data sources, such as the Santander User Data Gateway (UDG), a THREDDS-based
In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables-which are important for the development of both dynamical and statistical downscaling schemes-from 40-yr European Centre for MediumRange Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP-NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the twosample Kolmogorov-Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be ''perfect'' are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible over most extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models-in opposition to statistical approaches-their results are expected to be more sensitive to reanalysis choice.
In this paper an application of clustering algorithms for statistical downscaling in short-range weather forecasts is presented. The advantages of this technique compared with standard nearest-neighbors analog methods are described both in terms of computational efficiency and forecast skill. Some validation results of daily precipitation and maximum wind speed operative downscaling (lead time 1-5 days) on a network of 100 stations in the Iberian Peninsula are reported for the period 1998-99. These results indicate that the weighting clustering method introduced in this paper clearly outperforms standard analog techniques for infrequent, or extreme, events (precipitation 20 mm; wind 80 km h 1). Outputs of an operative circulation model on different local-area or large-scale grids are considered to characterize the atmospheric circulation patterns, and the skill of both alternatives is compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.