The aim of the study was the production of solid lipid nanoparticles (SLN) loaded with ciprofloxacin (CIP) through two different production techniques, quasi-emulsion solvent diffusion (QESD) and solvent injection (SI). In order to efficaciously entrap the commercial salt form (hydrochloride) of the antibiotic in these lipid systems, a conversion of CIP hydrochloride to the free base was realized in situ, through the addition of triethylamine. To ensure physical stability to the carriers over time and ameliorate the interaction with bacterial cell membranes, positively charged SLN were produced by addition of the cationic lipid didecyldimethylammonium bromide (DDAB). Homogeneous SLN populations with a mean particle sizes of 250–350 nm were produced by both methods; drug encapsulation was over 85% for most samples. The SLN were physically stable for up to nine months both at 4 °C and 25 °C, although the former condition appears more suitable to guarantee the maintenance of the initial particle size distribution. As expected, CIP encapsulation efficiency underwent a slight reduction after nine months of storage, although the initial high drug content values would ensure a residual concentration of the antibiotic in the SLN still appropriate to exert an acceptable antibacterial activity. Selected SLN formulations were subjected to an in vitro microbiological assay against different bacterial strains, to verify the effect of nanoencapsulation on the cell growth inhibitory activity of CIP. In general, CIP-SLN produced without DDAB showed MIC values for CIP comparable to those of the free drug. Conversely, addition of increasing percentages of the cationic lipid, reflected by a progressive increase of the positive value of the Zeta potential, showed a variety of MIC values against the various bacterial strains, but with values 2–4 order of dilution lower than free CIP. An hypothesis of the effect of the cationic lipid upon the increased antibacterial activity of CIP in the nanocarriers is also formulated.
Development of pH-dependent systems for colon delivery of natural active ingredients is an attractive area of research in the field of nutraceutical products. This study was focused on Eudraguard® resins, that are methacrylate copolymers approved as “food grade” by European Commission and useful for the production of food supplements. In particular, Eudraguard® Biotic (EUG-B), characterized by a pH-dependent solubility and Eudraguard® Control (EUG-C), whose chemical properties support a prolonged release of the encapsulated compounds, were tested. To obtain EUG microparticles, different preparation techniques were tested, in order to optimize the preparation method and observe the effect upon drug encapsulation and specific colonic release. Unloaded microparticles were initially produced to evaluate the influence of polymer characteristics on the formulation process; subsequently microparticles loaded with quercetin (QUE) as a low solubility model drug were prepared. The characterization of microparticles in the solid-state (FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry) indicated that QUE was uniformly dispersed in a non-crystalline state in the polymeric network, without strong signs of chemical interactions. Finally, to assess the ability of EUG-C and EUG-B to control the drug release in the gastric environment, and to allow an increased release at a colonic level, suitable in vitro release tests were carried out by simulating the pH variations along the gastro-intestinal tract. Among the evaluated preparation methods, those in which an aqueous phase was not present, and in particular the emulsion-solvent evaporation method produced the best microparticle systems. The in vitro tests showed a limited drug release at a gastric level and a good specific colon release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.