Metabolites offer an important unexplored complement to understanding the pluripotency of stem cells. Using mass spectrometry-based metabolomics, we show that embryonic stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. By monitoring the reduced and oxidized glutathione ratio as well as ascorbic acid levels, we demonstrate that the stem cell redox status is regulated during differentiation. Based on the oxidative biochemistry of the unsaturated metabolites, we experimentally manipulated specific pathways in embryonic stem cells while monitoring the effects on differentiation. Inhibition of the eicosanoid signaling pathway promoted pluripotency and maintained levels of unsaturated fatty acids. In contrast, downstream oxidized metabolites (e.g., neuroprotectin D1) and substrates of pro-oxidative reactions (e.g., acyl-carnitines), promoted neuronal and cardiac differentiation. We postulate that the highly unsaturated metabolome sustained by stem cells makes them particularly attuned to differentiate in response to in vivo oxidative processes such as inflammation.
Active arrays: Complex lipid‐tagged oligosaccharides, including large multiantennary species, can be efficiently immobilized on self‐assembled monolayers of alkyl mercaptans (see picture). These arrays can be used to follow the action of a galactosyltransferase (GalT) and a hydrolase. The utility of the system for the selective trapping and identification of a lectin from a complex mixture was also demonstrated.
[Reaction: see text]. The total synthesis of the natural product Bengamide E, one of the members of a new class of antitumor natural products of marine origin, is reported based on a convergent and flexible synthetic route featuring an oxirane ring-opening reaction and an olefin cross metathesis. In a similar way, analogues structurally modified at C-2 and at the terminal vinyl positions were prepared by introduction of various nucleophiles and alkyl substituents during the epoxide opening and the olefin cross metathesis steps, respectively. These studies demonstrate the validity of our synthetic strategy, although they reveal some problems associated with the olefin cross metathesis, whose efficiency depends on the substituent at the C-2 position as well as the steric environment of the alkene.
Aggregation-Induced Emission (AIE) in organic molecules has recently attracted the attention of the scientific community because of their potential applications in different fields. Compared to small molecules, little attention has been paid to polymers and oligomers that exhibit AIE, despite having excellent properties such as high emission efficiency in aggregate and solid states, signal amplification effect, good processability and the availability of multiple functionalization sites. In addition to these features, if the molecular structure is fully conjugated, intramolecular electronic interactions between the composing chromophores may appear, thus giving rise to a wealth of new photophysical properties. In this review, we focus on selected fully conjugated oligomers, dendrimers and polymers, and briefly summarize their synthetic routes, fluorescence properties and potential applications. An exhaustive comparison between spectroscopic results in solution and aggregates or in solid state has been collected in almost all examples, and an opinion on the future direction of the field is briefly stated.
A new surface-based MALDI-Tof-MS glycosyl hydrolase assay has been developed in which lipid-tagged oligosaccharides, representing defined fragments of major plant cell wall polysaccharides, are immobilized via hydrophobic interactions on an alkylthiol functionalised gold sample plate and employed in the functional screening of several purified enzymes, environmental samples and saliva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.