Satellite DNAs are tandemly repeated sequences preferentially assembled into large arrays within constitutive heterochromatin and their transcription is often activated by stress conditions, particularly by heat stress. Bioinformatic analyses of sequenced genomes however reveal single repeats or short arrays of satellite DNAs dispersed in the vicinity of genes within euchromatin. Here, we analyze transcription of a major human alpha satellite DNA upon heat stress and follow the dynamics of “silent” H3K9me3 and “active” H3K4me2/3 histone marks at dispersed euchromatic and tandemly arranged heterochromatic alpha repeats. The results show H3K9me3 enrichment at alpha repeats upon heat stress, which correlates with the dynamics of alpha satellite DNA transcription activation, while no change in H3K4me2/3 level is detected. Spreading of H3K9me3 up to 1–2 kb from the insertion sites of the euchromatic alpha repeats is detected, revealing the alpha repeats as modulators of local chromatin structure. In addition, expression of genes containing alpha repeats within introns as well as of genes closest to the intergenic alpha repeats is downregulated upon heat stress. Further studies are necessary to reveal the possible contribution of H3K9me3 enriched alpha repeats, in particular those located within introns, to the silencing of their associated genes.
Tandemly repeated satellite DNAs are major components of centromeres and pericentromeric heterochromatin which are crucial chromosomal elements responsible for accurate chromosome segregation. Satellite DNAs also contribute to genome evolution and the speciation process and are important for the maintenance of the entire genome inside the nucleus. In addition, there is increasing evidence for active and tightly regulated transcription of satellite DNAs and for the role of their transcripts in diverse processes. In this review, we focus on recent discoveries related to the regulation of satellite DNA expression and the role of their transcripts, either in heterochromatin establishment and centromere function or in gene expression regulation under various biological contexts. We discuss the role of satellite transcripts in the stress response and environmental adaptation as well as consequences of the dysregulation of satellite DNA expression in cancer and their potential use as cancer biomarkers.
Satellite DNAs are tandemly repeated sequences clustered within heterochromatin. However, in some cases, such as the major TCAST1 satellite DNA from the beetle Tribolium castaneum, they are found partially dispersed within euchromatin. Such organization together with transcriptional activity enables TCAST1 to modulate the activity of neighboring genes. In order to explore if other T. castaneum repetitive families have features that could provide them with a possible gene-modulatory role, we compare here the structure, organization, dispersion profiles, and transcription activity of 10 distinct TCAST repetitive families including TCAST1. The genome organization of TCAST families exhibit either satellite-like or transposon-like characteristics. In addition to heterochromatin localization, bioinformatic searches of the assembled genome have revealed dispersion of all families within euchromatin, preferentially in the form of single repeats. Dispersed TCAST repeats are mutually correlated in distribution and are grouped in distinct regions of euchromatin. The repeats are associated with genes, are enriched in introns relative to intergenic regions, and very rarely overlap exons. In spite of the different mechanisms of repeat proliferation, such as transposition and homologous recombination, all TCAST families share a similar frequency of spreading as well as dispersion and gene association profiles. Additionally, TCAST families are transcribed and their transcription is significantly activated by heat stress. A possibility that such common features of TCAST families might be related to their potential gene-modulatory role is discussed.
In the flour beetle, Tribolium castaneum (peri)centromeric heterochromatin is mainly composed of a major satellite DNA TCAST1 interspersed with minor satellites. With the exception of heterochromatin, clustered satellite repeats are found dispersed within euchromatin. In order to uncover a possible satellite DNA function within the beetle genome, we analysed the expression of the major TCAST1 and a minor TCAST2 satellite during the development and upon heat stress. The results reveal that TCAST1 transcription was strongly induced at specific embryonic stages and upon heat stress, while TCAST2 transcription is stable during both processes. TCAST1 transcripts are processed preferentially into piRNAs during embryogenesis and into siRNAs during later development, contrary to TCAST2 transcripts, which are processed exclusively into piRNAs. In addition, increased TCAST1 expression upon heat stress is accompanied by the enrichment of the silent histone mark H3K9me3 on the major satellite, while the H3K9me3 level at TCAST2 remains unchanged. The transcription of the two satellites is proposed to be affected by the chromatin state: heterochromatin and euchromatin, which are assumed to be the prevalent sources of TCAST1 and TCAST2 transcripts, respectively. In addition, distinct regulation of the expression might be related to diverse roles that major and minor satellite RNAs play during the development and stress response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.