Vertebrate limbs grow out from the flanks of embryos, with their main axis extending proximodistally from the trunk. Distinct limb domains, each with specific traits, are generated in a proximal-to-distal sequence during development. Diffusible factors expressed from signalling centres promote the outgrowth of limbs and specify their dorsoventral and anteroposterior axes. However, the molecular mechanism by which limb cells acquire their proximodistal (P-D) identity is unknown. Here we describe the role of the homeobox genes Meis1/2 and Pbx1 in the development of mouse, chicken and Drosophila limbs. We find that Meis1/2 expression is restricted to a proximal domain, coincident with the previously reported domain in which Pbx1 is localized to the nucleus, and resembling the distribution of the Drosophila homologues homothorax (hth) and extradenticle (exd); that Meis1 regulates Pbx1 activity by promoting nuclear import of the Pbx1 protein; and that ectopic expression of Meis1 in chicken and hth in Drosophila disrupts distal limb development and induces distal-to-proximal transformations. We suggest that restriction of Meis1/Hth to proximal regions of the vertebrate and insect limb is essential to specify cell fates and differentiation patterns along the P-D axis of the limb.
Cell migration represents an important cellular response that utilizes cytoskeletal reorganization as its driving force. Here, we describe a new signaling cascade linking PDGF receptor stimulation to actin rearrangements and cell migration. We demonstrate that PDGF activates Cdc42 and its downstream effector N-WASP to mediate filopodia formation, actin stress fiber disassembly, and a reduction in focal adhesion complexes. Induction of the Cdc42 pathway is independent of phosphoinositide 3-kinase (PI3K) enzymatic activity, but it is dependent on the p85α regulatory subunit of PI3K. Finally, data are provided showing that activation of this pathway is required for PDGF-induced cell migration on collagen. These observations show the essential role of the PI3K regulatory subunit p85α in controlling PDGF receptor–induced cytoskeletal changes and cell migration, illustrating a novel signaling pathway that links receptor stimulation at the cell membrane with actin dynamics.
Chemokines coordinate leukocyte trafficking by promoting oligomerization and signaling by G protein-coupled receptors; however, it is not known which amino acid residues of the receptors participate in this process. Bioinformatic analysis predicted that Ile52 in transmembrane region-1 (TM1) and Val150 in TM4 of the chemokine receptor CCR5 are key residues in the interaction surface between CCR5 molecules. Mutation of these residues generated nonfunctional receptors that could not dimerize or trigger signaling. In vitro and in vivo studies in human cell lines and primary T cells showed that synthetic peptides containing these residues blocked responses induced by the CCR5 ligand CCL5. Fluorescence resonance energy transfer showed the presence of preformed, ligand-stabilized chemokine receptor oligomers. This is the first description of the residues involved in chemokine receptor dimerization, and indicates a potential target for the modification of chemokine responses.
Background: Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic. Because the severity of the disease is highly variable, predictive models to stratify patients according to their mortality risk are needed. Objective: Our aim was to develop a model able to predict the risk of fatal outcome in patients with COVID-19 that could be used easily at the time of patients' arrival at the hospital. Methods: We constructed a prospective cohort with 611 adult patients in whom COVID-19 was diagnosed between March 10 and April 12, 2020, in a tertiary hospital in Madrid, Spain. The analysis included 501 patients who had been discharged or had died by April 20, 2020. The capacity of several biomarkers, measured at the beginning of hospitalization, to predict mortality was assessed individually. Those biomarkers that independently contributed to improve mortality prediction were included in a multivariable risk model. Results: High IL-6 level, C-reactive protein level, lactate dehydrogenase (LDH) level, ferritin level, D-dimer level, neutrophil count, and neutrophil-to-lymphocyte ratio were all predictive of mortality (area under the curve >0.70), as were low albumin level, lymphocyte count, monocyte count, and ratio of peripheral blood oxygen saturation to fraction of inspired oxygen (SpO 2 /FiO 2). A multivariable mortality risk model including the SpO 2 /FiO 2 ratio, neutrophil-to-lymphocyte ratio, LDH level, IL-6 level, and age was developed and showed high accuracy for the prediction of fatal outcome (area under the curve 0.94). The optimal cutoff reliably classified patients (including patients with no initial respiratory distress) as survivors and nonsurvivors with 0.88 sensitivity and 0.89 specificity. Conclusion: This mortality risk model allows early risk stratification of hospitalized patients with COVID-19 before the appearance of obvious signs of clinical deterioration, and it can be used as a tool to guide clinical decision making. (J Allergy Clin Immunol 2020;146:799-807.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.