improving soil engineering properties is an inevitable process before construction on soft soil. increasing soil strength with chemical stabilizing agents, such as cement, raises environmental concerns. therefore, sustainable solutions are in high demand. one of the promising solutions is the usage of biopolymers. Five biopolymer types were investigated in this study: Xanthan Gum, Beta 1,3/1,6 Glucan, Guar Gum, Chitosan, and Alginate. Their effect on the soil strength improvement was experimentally investigated by performing unconfined compression, splitting tensile, triaxial, and direct shear tests. All tests were performed with different biopolymer concentrations and curing periods. Additionally, in order to have an insight on the susceptibility to natural elements, plain soil, and biopolymertreated specimens were exposed to real atmospheric conditions. The extensive experimental results showed that the soil strength tends to increase with the increase of biopolymer concentration and with the curing time. However, it was shown that the soil strength does not considerably change after a certain biopolymer concentration level and curing time. furthermore, it has been observed that the biopolymer-treated specimens showed better resistance to the influence of the environmental conditions. In general, Xanthan Gum, Guar Gum, and Beta 1,3/1,6 Glucan showed the most dominant effect and potential for the future of sustainable engineering.
When construction work is planned on soil with inadequate shear strength, its engineering properties need to be improved. Chemical stabilization is one of the solutions for soil strength improvement. Currently, the most common additive that is used for chemical soil improvement is cement. Cement is an effective solution, but it has several negative effects on the environment. Therefore, the urges for environment-friendly solutions that can replace cement and show good potential for sustainable engineering are rising. One of the promising environment-friendly solutions is the use of biopolymers. Therefore, the main aim of the present study was to investigate the effect of the biopolymer xanthan gum on the strength of different types of soil. Xanthan gum was mixed with three different types of soil: sand, clay, and silty sand. The strength of treated and non-treated soil was experimentally investigated by performing unconfined compression, direct shear, and triaxial tests. From the results, it was observed that xanthan gum significantly increased the strength of each soil, which shows its major potential for the future of sustainable engineering.
The world today is more oriented towards sustainable and environmental-friendly solutions in every field of science, technology, and engineering. Therefore, novel sustainable and eco-friendly approaches for soil improvement have also emerged. One of the effective, promising, and green solutions is the utilization of biopolymers. However, even though the biopolymers proved to be effective in enhancing the soil-mechanical properties, it is still unknown how they behave under real environmental conditions, such as fluctuating temperatures, moisture, plants, microorganisms, to name a few. The main research aim is to investigate the durability of biopolymer-improved soil on the cyclic processes of wetting and drying. Two types of biopolymers (Xanthan Gum and Guar Gum), and two types of soils (clean sand and silty sand) were investigated in this study. The results indicated that some biopolymer-amended specimens kept more than 70% of their original mass during wetting-drying cycles. During the compressive strength analysis, some biopolymer-treated specimens kept up to 45% of their initial strength during seven wetting-drying cycles. Furthermore, this study showed that certain damaged soil-biopolymer bonds could be restored with proper treatment. Repeating the process of wetting and drying can reactivate the bonding properties of biopolymers, which amends the broken bonds in soil. The regenerative property of biopolymers is an important feature that should not be neglected. It gives a clearer picture of the biopolymer utilization and makes it a good option for rapid temporary construction or long-standing construction in the areas with an arid climate.
Enhancement of soil engineering properties with biopolymers has been shown recently as a viable and environmentally benign alternative to cement and chemical stabilization. Interest in biopolymer-treated soil is evident from the upsurge of related research activities in the last five years, most of which have been of experimental nature. However, biopolymers have not yet found their way into engineering practice. One of the reasons for this may be the absence of computational models that would allow engineers to incorporate biopolymer-treated soil into their designs. Therefore, the main goal of this study is to numerically capture a macroscopic stress-strain response and investigate the effect of biopolymers on the onset of strain localization. Several diagnostic strain localization analyses were conducted, thus providing strain and stress levels at the onset of strain localization, along with the orientations of the deformation band. Several unconfined compression and triaxial tests on the plain and biopolymer-treated soils were modeled. Results showed that biopolymers significantly improved the mechanical behavior of the soil and affected the onset of strain localization. The numerical results were confirmed by the digital image analysis of the unconfined compression tests. Digital image processing successfully captured high strain concentrations, which tend to occur close to the peak stress.
The enhancement of soil engineering properties with biopolymers has been shown recently as a viable and environmentally benign alternative to cement and chemical stabilization. Interest in biopolymer-treated soil is evident from the upsurge of related research activities in the last five years, most of which have been experimental in nature. However, biopolymers have not yet found their way into engineering practice. One of the reasons for this may be the absence of computational models that would allow engineers to incorporate biopolymer-treated soil into their designs. Therefore, the main goal of this study is to numerically capture a macroscopic stress-strain response and investigate the effect of biopolymers on the onset of strain localization. Several diagnostic strain-localization analyses were conducted, thus providing strain and stress levels at the onset of strain localization, along with the orientations of the deformation band. Several unconfined compression and triaxial tests on the plain and biopolymer-treated soils were modeled. Results showed that biopolymers significantly improved the mechanical behavior of the soil and affected the onset of strain localization. The numerical results were confirmed by the digital image analysis of the unconfined compression tests. Digital image processing successfully captured high strain concentrations, which tended to occur close to the peak stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.