A photosynthetic microbial mat was investigated in a large pond of a Mediterranean saltern (Salins-de-Giraud, Camargue, France) having water salinity from 70 per thousand to 150 per thousand (w/v). Analysis of characteristic biomarkers (e.g., major microbial fatty acids, hydrocarbons, alcohols and alkenones) revealed that cyanobacteria were the major component of the pond, in addition to diatoms and other algae. Functional bacterial groups involved in the sulfur cycle could be correlated to these biomarkers, i.e. sulfate-reducing, sulfur-oxidizing and anoxygenic phototrophic bacteria. In the first 0.5 mm of the mat, a high rate of photosynthesis showed the activity of oxygenic phototrophs in the surface layer. Ten different cyanobacterial populations were detected with confocal laser scanning microscopy: six filamentous species, with Microcoleus chthonoplastes and Halomicronema excentricum as dominant (73% of total counts); and four unicellular types affiliated to Microcystis, Chroococcus, Gloeocapsa, and Synechocystis (27% of total counts). Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments confirmed the presence of Microcoleus, Oscillatoria, and Leptolyngbya strains (Halomicronema was not detected here) and revealed additional presence of Phormidium, Pleurocapsa and Calotrix types. Spectral scalar irradiance measurements did not reveal a particular zonation of cyanobacteria, purple or green bacteria in the first millimeter of the mat. Terminal-restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA gene fragments of bacteria depicted the community composition and a fine-scale depth-distribution of at least five different populations of anoxygenic phototrophs and at least three types of sulfate-reducing bacteria along the microgradients of oxygen and light inside the microbial mat.
The microenvironment and community composition of microbial mats developing on beaches in Scapa Flow (Orkney Islands) were investigated. Analysis of characteristic biomarkers (major fatty acids, hydrocarbons, alcohols, and alkenones) revealed the presence of different groups of bacteria and microalgae in mats from Waulkmill and Swanbister beach, including diatoms, Haptophyceae, cyanobacteria, and sulfate-reducing bacteria. These analyses also indicated the presence of methanogens, especially in Swanbister beach mats, and therefore a possible role of methanogenesis for the carbon cycle of these sediments. High amounts of algal lipids and slightly higher numbers (genera, abundances) of cyanobacteria were found in Waulkmill Bay mats. However, overall only a few genera and low numbers of unicellular and filamentous cyanobacteria were present in mats from Waulkmill and Swanbister beach, as deduced from CLSM (confocal laser scanning microscopy) analysis. Spectral scalar irradiance measurements with fiber-optic microprobes indicated a pronounced heterogeneity concerning zonation and density of mainly anoxygenic phototrophs in Swanbister Bay mats. By microsensor and T-RFLP (terminal restriction fragment length polymorphism) analysis in Swanbister beach mats, the depth distribution of different populations of purple and sulfate-reducing bacteria could be related to the microenvironmental conditions. Oxygen, but also sulfide and other (inorganic and organic) sulfur compounds, seems to play an important role in the stratification and diversity of these two major bacterial groups involved in sulfur cycling in Swanbister beach mats.
The spatio-temporal distribution of phototrophic communities of the hypersaline photosynthetic Camarguc microbial mat (Salins-de-Giraud, France) was investigated over a diel cycle by combining microscopic and molecular approaches. Microcoleus chthonoplastes and Halomicronema excentricum, the dominant cyanobacteria of this oxyphotrophic community, were observed with confocal laser scanning microscopy to determine their biomass profiles. Both bacteria have similar vertical distributions, varying from a homogenous distribution through the mat during the night, to a specific localization in the upper oxic zone of 1.5 mm during the day. Terminal restriction fragment length polymorphism of PCR-amplified pufM gene fragments revealed three groups of anoxyphototrophic populations, which varied according to the two opposite periods of the diel cycle under study. They were either specifically detected in only one period, or homogenously distributed through the mat in all periods, or located in specific zones of the mat depending on the period considered. Oxygen concentrations, pH and biomass of the major filamentous cyanobacteria were the determinative factors in the distribution of these anoxyphototrophs across the mat. Thus, vertical migration, cell-cell aggregate formation and metabolic switches were the most evident defence of the photosynthetic populations against the adverse effects of sulfide and oxygen fluxes during a diel cycle.
We have developed a method based on confocal laser scanning microscopy for detection and quantification of cyanobacteria from the Ebro Delta microbial mats. Cyanobacteria play a major role as primary producers in microbial mats; it is difficult, however, to apply classical methods to estimate their biomass because they establish strong interactions with detritic particles. The protocol described here allows the localization of individual cells or filaments with micrometre precision without the need to either manipulate or stain the samples. This method is suitable for studying biomass ‘in situ’ in microbial mats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.