Abstract-When a smart meter, be it single-phase or threephase, is connected to a three-phase network, the phase(s) to which it is connected is (are) initially not known. This means that each of its measurements is not uniquely associated with a phase of the distribution network. This phase information is important because it can be used by Distribution System Operators to take actions in order to have a network that is more balanced.In this work, the correlation between the voltage measurements of the smart meters is used to identify the phases. To do so, the constrained k-means clustering method is first introduced as a reference, as it has been previously used for phase identification. A novel, automatic and effective method is then proposed to overcome the main drawback of the constrained k-means clustering, and improve the quality of the clustering. Indeed, it takes into account the underlying structure of the low-voltage distribution networks beneath the voltage measurements without a priori knowledge on the topology of the network. Both methods are analysed with real measurements from a distribution network in Belgium. The proposed algorithm shows superior performance in different settings, e.g. when the ratio of single-phase over threephase meters in the network is high, when the period over which the voltages are averaged is longer than one minute, etc.
In this work, we propose a simple yet effective solution to the problem of connectome inference in calcium imaging data. The proposed algorithm consists of two steps. First, processing the raw signals to detect neural peak activities. Second, inferring the degree of association between neurons from partial correlation statistics. This paper summarises the methodology that led us to win the Connectomics Challenge, proposes a simplified version of our method, and finally compares our results with respect to other inference methods.
Machine learning approaches have been increasingly used in the neuroimaging field for the design of computer-aided diagnosis systems. In this paper, we focus on the ability of these methods to provide interpretable information about the brain regions that are the most informative about the disease or condition of interest. In particular, we investigate the benefit of group-based, instead of voxel-based, analyses in the context of Random Forests. Assuming a prior division of the voxels into non overlapping groups (defined by an atlas), we propose several procedures to derive group importances from individual voxel importances derived from Random Forests models. We then adapt several permutation schemes to turn group importance scores into more interpretable statistical scores that allow to determine the truly relevant groups in the importance rankings. The good behaviour of these methods is first assessed on artificial datasets. Then, they are applied on our own dataset of FDG-PET scans to identify the brain regions involved in the prognosis of Alzheimer's disease.
Distribution system operators have been upgrading their network over several decades, though not always keeping digital records of all changes. As a result, the operators do not always know exactly how their customers are connected to a network. Some of these customers are equipped with smart meters, providing voltage and current time-series. These measurements can be used to identify the network topology and the line impedances. This paper presents a method to identify radially operated low-voltage networks which can be applied with limited number of smart meters. The resulting identified model provides the map of the network and impedances of the inferred lines, allowing to perform subsequent analyses (e.g. power-flow). Simulation results on a case study with 128 nodes show an average error of 0.69% in computed voltages, while only 40% of the nodes are equipped with smart meters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.