In this paper, a third-generation universal mobile telecommunications system (UMTS) solution for the delivery of biomedical information from an ambulance to a hospital is presented. The joint transmission of voice, real-time video, electrocardiogram signals, and medical scans in a realistic cellular multiuser simulation environment is considered, taking into account the advantages and particularities of UMTS technology for such transmission. The accomplishment of quality of service constraints for different services is investigated and quantitative results are provided in order to demonstrate the feasibility of using UMTS technology for emergency care services on high-speed moving ambulance vehicles.
The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage.
BLE is a widely used short-range technology which has gained a relevant position inside the Internet-of-Things (IoT) paradigm development thanks to its simplicity, low-power consumption, lowcost and robustness. New enhancements over BLE have focused on supporting mesh network topology. Compared to other mesh networks, BLE mesh has only considered a managed flooding protocol in its first version. Managed flooding may generally seem inefficient in many contexts, but it is a high desirable option when data transmission is urgent, the network is small or its configuration changes in a very dynamic way. Knowing the interest to many application contexts, this paper analyses the impact of tweaking several features over the reliability and efficiency of the mesh network. These features are configured and controlled in different layers: message repetition schemes, the transmission randomization, the election of a scheme based on an acknowledged or unacknowledged transmission, etc. In order to estimate the real performance of a mesh network deployment, this paper evaluates the effects of the interaction of the chosen parameters, their appropriate adjustment in relation with the characteristics of real implementations and the true overhead related to the whole protocol stack. The paper identifies configuration challenges, proposes network tuning criteria and outlines possible standard improvements. For this purpose, a detailed assessment on the implementation and execution of real devices has been performed with their chipset limitations. INDEX TERMS Bluetooth low energy, wireless mesh networks, BLE mesh, managed flooding, performance.
Ultra wideband (UWB) radio technology is nowadays one of the most promising technologies for medium-short range communications. It has a wide range of applications including Wireless Sensor Networks (WSN) with simultaneous data transmission and location tracking. The combination of location and data transmission is important in order to increase flexibility and reduce the cost and complexity of the system deployment. In this scenario, accuracy is not the only evaluation criteria, but also the amount of resources associated to the location service, as it has an impact not only on the location capacity of the system but also on the sensor data transmission capacity. Although several studies can be found in the literature addressing UWB-based localization, these studies mainly focus on distance estimation and position calculation algorithms. Practical aspects such as the design of the functional architecture, the procedure for the transmission of the associated information between the different elements of the system, and the need of tracking multiple terminals simultaneously in various application scenarios, are generally omitted. This paper provides a complete system level evaluation of a UWB-based communication and location system for Wireless Sensor Networks, including aspects such as UWB-based ranging, tracking algorithms, latency, target mobility and MAC layer design. With this purpose, a custom simulator has been developed, and results with real UWB equipment are presented too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.