Salmonella enterica is commonly acquired from contaminated food and is an important cause of illness worldwide. Interventions are needed to control Salmonella; subtyping Salmonella by serotyping is useful for targeting such interventions. We, therefore, analyzed the global distribution of the 15 most frequently identified serovars of Salmonella isolated from humans from 2001 to 2007 in laboratories from 37 countries that participated in World Health Organization Global Foodborne Infections Network and demonstrated serotyping proficiency in the Global Foodborne Infections Network External Quality Assurance System. In all regions throughout the study period, with the exception of the Oceania and North American regions, Salmonella serovars Enteritidis and Typhimurium ranked as the most common and second most common serovar, respectively. In the North American and Oceania (Australia and New Zealand) regions, Salmonella serovar Typhimurium was the most common serovar reported, and Salmonella serovar Enteritidis was the second most common serovar. During the study period, the proportion of Salmonella isolates reported from humans that were Salmonella serovar Enteritidis was 43.5% (range: 40.6% [2007] to 44.9% [2003]), and Salmonella serovar Typhimurium was 17.1% (range: 15% [2007] to 18.9% [2001]). Salmonella serovars Newport (mainly observed in Latin and North American and European countries), Infantis (dominating in all regions), Virchow (mainly observed in Asian, European, and Oceanic countries), Hadar (profound in European countries), and Agona (intense in Latin and North American and European countries) were also frequently isolated with an overall proportion of 3.5%, 1.8%, 1.5%, 1.5%, and 0.8%, respectively. There were large differences in the most commonly isolated serovars between regions, but lesser differences between countries within the same region. The results also highlight the complexity of the global epidemiology of Salmonella and the need and importance for improving monitoring data of those serovars of highest epidemiologic importance.
Reducing the burden of foodborne salmonellosis is challenging. It requires identification of the most important food sources causing disease and prioritization of effective intervention strategies. For this purpose, a variety of methods to estimate the relative contribution of different sources of Salmonella infections have been applied worldwide. Each has strengths and limitations, and the usefulness of each depends on the public health questions being addressed. In this study, we reviewed the source attribution methods and outcomes of several studies developed in different countries and settings, comparing approaches and regional differences in attribution estimates. Reviewed results suggest that illnesses and outbreaks are most commonly attributed to exposure to contaminated food, and that eggs, broiler chickens, and pigs are among the top sources. Although most source attribution studies do not attribute salmonellosis to produce, outbreak data in several countries suggest that exposure to raw vegetables is also an important source. International travel was also a consistently important exposure in several studies. Still, the relative contribution of specific sources to human salmonellosis varied substantially between studies. Although differences in data inputs, methods, and the point in the food system where attribution was estimated contribute to variability between studies, observed differences also suggest regional differences in the epidemiology of salmonellosis.
Resistance in E. coli isolates from food animals (especially poultry and pigs) was highly correlated with resistance in isolates from humans. This supports the hypothesis that a large proportion of resistant E. coli isolates causing blood stream infections in people may be derived from food sources.
Multistate foodborne disease outbreaks account for a disproportionate number of outbreak-associated illnesses, hospitalizations, and deaths relative to their occurrence. Working together, food industries and public health departments and agencies can develop and implement more effective ways to identify and to trace contaminated foods linked to multistate outbreaks. Lessons learned during outbreak investigations can help improve food safety practices and regulations, and might prevent future outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.