We investigate a very basic problem in dynamic speed scaling where a sequence of jobs, each specified by an arrival time, a deadline and a processing volume, has to be processed so as to minimize energy consumption. We study multi-processor environments with m parallel variable-speed processors assuming that job migration is allowed, i.e. whenever a job is preempted it may be moved to a different processor. We first study the offline problem and show that optimal schedules can be computed efficiently in polynomial time, given any convex non-decreasing power function. In contrast to a previously known strategy, our algorithm does not resort to linear programming. For the online problem, we extend two algorithms Optimal Available and Average Rate proposed by Yao et al. [15] for the single processor setting. Here we concentrate on power functions P (s) = s α , where s is the processor speed and α > 1 is a constant.
Given n jobs with release dates, deadlines and processing times we consider the problem of scheduling them on m parallel machines so as to minimize the total energy consumed. Machines can enter a sleep state and they consume no energy in this state. Each machine requires Q units of energy to awaken from the sleep state and in its active state the machine can process jobs and consumes a unit of energy per unit time. We allow for preemption and migration of jobs and provide the first constant approximation algorithm for this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.