We present a simulation scheme for path integral simulation of molecular liquids where a small open region is embedded in a large reservoir of non interacting point‐particles. The scheme is based on the latest development of the adaptive resolution technique AdResS and allows for the space‐dependent change of molecular resolution from a path integral representation with 120 degrees of freedom to a point particle that does not interact with other molecules and vice versa. The method is applied to liquid water and implies a sizable gain regarding the request of computational resources compared to full path integral simulations. Given the role of water as universal solvent with a specific hydrogen bonding network, the path integral treatment of water molecules is important to describe the quantum effects of hydrogen atoms’ delocalization in space on the hydrogen bonding network. The method presented here implies feasible computational efforts compared to full path integral simulations of liquid water which, on large scales, are often prohibitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.