Human erythrocyte membranes express the multidrug resistance-associated proteins, MRP1, MRP4 and MRP5, that collectively can efflux oxidised glutathione, glutathione conjugates and cyclic nucleotides. It is already known that the quinoline derivative, MK-571, is a potent inhibitor of MRPmediated transport. We here examine whether the quinoline-based antimalarial drugs, amodiaquine, chloroquine, mefloquine, primaquine, quinidine and quinine, also interact with erythrocyte MRPs with consequences for their access to the intracellular parasites or for efflux of oxidised glutathione from infected cells. Using inside-out vesicles prepared from human erythrocytes we have shown that mefloquine and MK-571 inhibit transport of 3 μM [ 3 H]DNP-SG known to be mediated by MRP1 (IC 50 127 μM and 1.1 μM respectively) and of 3.3 μM [ 3 H]cGMP thought but not proven to be mediated primarily by MRP4 (IC 50 21 μM and 0.41 μM). They also inhibited transport in membrane vesicles prepared from tumour cells expressing MRP1 or MRP4 and blocked calcein efflux from MRP1 overexpressing cells and BCECF efflux from MRP4 overexpressing cells. Both stimulated ATPase activity in membranes prepared from MRP1 and MRP4 overexpressing cells and inhibited activity stimulated by quercetin or PGE 1 respectively. Neither inhibited [α-32 P]8-azidoATP binding confirming that the interactions are not at the ATP binding site. These results demonstrate that mefloquine and MK-571 both inhibit transport of other substrates and stimulate ATPase activity and thus may themselves be substrates for transport. But at concentrations achieved clinically mefloquine is unlikely to affect the MRP1-mediated transport of GSSG across the erythrocyte membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.