Growing interest in eXplainable Artificial Intelligence (XAI) aims to make AI and machine learning more understandable to human users. However, most existing work focuses on new algorithms, and not on usability, practical interpretability and efficacy on real users. In this vision paper, we propose a new research area of eXplainable AI for Designers (XAID), specifically for game designers. By focusing on a specific user group, their needs and tasks, we propose a human-centered approach for facilitating game designers to co-create with AI/ML techniques through XAID. We illustrate our initial XAID framework through three use cases, which require an understanding both of the innate properties of the AI techniques and users' needs, and we identify key open challenges.
This paper describes a method for generative player modeling and its application to the automatic testing of game content using archetypal player models called procedural personas. Theoretically grounded in psychological decision theory, procedural personas are implemented using a variation of Monte Carlo Tree Search (MCTS) where the node selection criteria are developed using evolutionary computation, replacing the standard UCB1 criterion of MCTS. Using these personas we demonstrate how generative player models can be applied to a varied corpus of game levels and demonstrate how different play styles can be enacted in each level. In short, we use artificially intelligent personas to construct synthetic playtesters. The proposed approach could be used as a tool for automatic play testing when human feedback is not readily available or when quick visualization of potential interactions is necessary. Possible applications include interactive tools during game development or procedural content generation systems where many evaluations must be conducted within a short time span.
Abstract-This paper introduces a search-based approach to personalized content generation with respect to visual aesthetics. The approach is based on a two-step adaptation procedure where (1) the evaluation function that characterizes the content is adjusted to match the visual aesthetics of users and (2) the content itself is optimized based on the personalized evaluation function. To test the efficacy of the approach we design fitness functions based on universal properties of visual perception, inspired by psychological and neurobiological research. Using these visual properties we generate aesthetically pleasing 2D game spaceships via neuroevolutionary constrained optimization and evaluate the impact of the designed visual properties on the generated spaceships. The offline generated spaceships are used as the initial population of an interactive evolution experiment in which players are asked to choose spaceships according to their visual taste: the impact of the various visual properties is adjusted based on player preferences and new content is generated online based on the updated computational model of visual aesthetics of the player. Results are presented which show the potential of the approach in generating content which is based on subjective criteria of visual aesthetics.
Quality-diversity (QD) algorithms search for a set of good solutions which cover a space as defined by behavior metrics. This simultaneous focus on quality and diversity with explicit metrics sets QD algorithms apart from standard single-and multi-objective evolutionary algorithms, as well as from diversity preservation approaches such as niching. These properties open up new avenues for artificial intelligence in games, in particular for procedural content generation. Creating multiple systematically varying solutions allows new approaches to creative human-AI interaction as well as adaptivity. In the last few years, a handful of applications of QD to procedural content generation and game playing have been proposed; we discuss these and propose challenges for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.