Abstract. In this paper, we present boundary labeling, a new approach for labeling point sets with large labels. We first place disjoint labels around an axis-parallel rectangle that contains the points. Then we connect each label to its point such that no two connections intersect. Such an approach is common e.g. in technical drawings and medical atlases, but so far the problem has not been studied in the literature. The new problem is interesting in that it is a mixture of a label-placement and a graph-drawing problem.
We introduce boundary labeling, a new model for labeling point sites with large labels. According to the boundary-labeling model, labels are placed around an axis-parallel rectangle that contains the point sites, each label is connected to its corresponding site through a polygonal line called leader, and no two leaders intersect. Although boundary labeling is commonly used, e.g., for technical drawings and illustrations in medical atlases, this problem has not yet been studied in the literature. The problem is interesting in that it is a mixture of a label-placement and a graph-drawing problem.In this paper we investigate several variants of the boundary-labeling problem. We consider labels of identical or different size, straight-line or rectilinear leaders, fixed or sliding ports for attaching leaders to sites and attaching labels to one, two or all four sides of the bounding rectangle. For any variant of the boundary labeling model, we aim at highly esthetical placements of labels and leaders. We present simple and efficient algorithms that minimize the total leader length or, in the case of rectilinear leaders, the total number of bends.
In a fan-planar drawing of a graph an edge can cross only edges with a common end-vertex. Fan-planar drawings have been recently introduced by Kaufmann and Ueckerdt [35], who proved that every n-vertex fan-planar drawing has at most 5. n-. 10 edges, and that this bound is tight for n≥. 20. We extend their result from both the combinatorial and the algorithmic point of view. We prove tight bounds on the density of constrained versions of fan-planar drawings and study the relationship between fan-planarity and k-planarity. Also, we prove that testing fan-planarity in the variable embedding setting is NP-complete
We use basic results from graph theory to design two algorithms for constructing 3-dimensional, intersection-free orthogonal grid drawings of n vertex graphs of maximum degree 6. Our first algorithm gives drawings bounded by an O(x/~) • O(x/~ • O(v~) box; each edge route contains at most 7 bends. The best previous result generated edge routes containing up to 16 bends per route. Our second algorithm gives drawings having at most 3 bends per edge route. The drawings he in an O(n) • O(n) x O(n) bounding box. Together, the two algorithms initiate the study of bend/bounding box trade-off issues for 3-dimensional grid drawings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.