IntroductionRegenerative medicine and particular adult stem cells represent an alternative option with several fruitful therapeutic applications in patients suffering from chronic lung diseases including idiopathic pulmonary fibrosis (IPF). Nevertheless, lack of knowledge regarding the origin and the potential of mesenchymal stem cells (MSCs) to differentiate into fibroblasts has limited their use for the treatment of this dismal disease.Patients and methodsTo this end, we conducted a phase Ib, non-randomized, clinical trial to study the safety of three endobronchial infusions of autologous adipose derived stromal cells (ADSCs)-stromal vascular fraction (SVF) (0.5 million cells per kgr of body weight per infusion) in patients with IPF (n=14) of mild to moderate disease severity (forced vital capacity –FVC>50% predicted value and diffusion lung capacity for carbon monoxide-DLCO>35% of predicted value). Our primary end-point was incidence of treatment emergent adverse events within 12 months. Alterations of functional, exercise capacity and quality of life parameters at serial time points (baseline, 6 and 12 months after first infusion) were exploratory secondary end-points.ResultsNo cases of serious or clinically meaningful adverse events including short-term infusional toxicities as well as long-term ectopic tissue formation were recorded in all patients. Detailed safety monitoring through several time-points indicated that cell-treated patients did not deteriorate in both functional parameters and indicators of quality of life.ConclusionsThe clinical trial met its primary objective demonstrating an acceptable safety profile of endobronchially administered autologous ADSCs-SVF. Our findings accelerate the rapidly expanded scientific knowledge and indicate a way towards future efficacy trials.
We report the epidemiologic characteristics of Crimean-Congo hemorrhagic fever in Bulgaria, as well as the first genetic characterization of the virus strains circulating in the country in 2002 to 2003 that caused disease in humans.
A retrospective serological and genetic study of hantaviruses responsible for hemorrhagic fever with renal syndrome (HFRS) in Greece during the last 17 years is presented. Fifty-one serum samples taken from 30 HFRS cases previously diagnosed by immunofluorescence assay were tested by ELISA for IgG (Hantaan, Dobrava, and Puumala) and IgM antibodies (Hantaan and Puumala). Results were compatible with the majority of infections being related to hantaviruses carried by rodents of the subfamily Murinae. RNA was extracted from 26 selected samples and reverse transcriptase-polymerase chain reaction (RT-PCR) was performed using primers specifically designed for the detection of hanta-viruses associated with murine (MS-N-specific, MM-G1-specific primers) or arvicoline rodents (PPT-N-specific primers). In addition, primers previously designed for the detection of the G2 coding region of the Murine-associated hanta-viruses were also used. Sequencing of the PCR products was then performed, followed by phylogenetic analysis of nucleotide sequence differences. Eleven out of the 26 serum samples tested were found to be positive by PCR with the MS-N primers, whereas four were positive with the MM-G1 primers, and only two with the G2 primers. None of the samples was found positive with the PPT primers. The sequence analysis showed that the virus that was responsible for these 11 HFRS cases was the Dobrava virus, which is endemic throughout the Balkans.
We report the genetic characterization of the M RNA segment of Crimean Congo hemorrhagic fever virus (CCHFV). Two CCHFV strains isolated in Xinjiang Province, a region endemic for CCHF in northwestern China, were studied. These strains, designated BA66019 and BA8402, were isolated in 1965 and 1984 from a CCHF patient and Hyalomma ticks, respectively. Viral RNA was extracted from suckling mouse brains infected with these two strains, amplified, and sequenced. The full-length M RNA, consisting of 5.3 kb, was determined for both strains. The coding nucleotide sequences of the two strains differed from each other by 17.5% and from the reference CCHFV strain IbAr10200 by a mean of 22%, suggesting that the genus Nairovirus comprises a group of genetically highly diverse strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.