During the last 10 years, the Institute for Environmental Research and Sustainable Development of the National Observatory of Athens has developed and operates a network of automated weather stations across Greece. The motivation behind the network development is the monitoring of weather conditions in Greece with the aim to support not only the research needs (weather monitoring and analysis, weather forecast skill evaluation) but also the needs of various communities of the production sector (agriculture, constructions, leisure and tourism, etc.). By the end of 2016, 335 weather stations are in operation, providing real‐time data at 10‐min intervals. This paper provides information about the logistics of this network, including real‐time applications of the collected data as well as information on the quality control protocols, the construction of the station data and metadata repository and the means through which the data are made available to users.
Abstract. The paper examines the flash flood events that occurred over a decade in the Attica prefecture, the most urbanized region of Greece, with the aim of identifying triggering rainfall thresholds, as well as assessing the effect of rainfall upon the magnitude of the induced damages. The analysis incorporates rainfall records from a network of 28 surface meteorological stations and information on the spatial distribution of the flash flood events that is derived from the active database of damaging weather events maintained by the atmospheric modelling group of the National Observatory of Athens. The main findings concern firstly the relation between the flash flood impact, as measured by the fire service operations in flooded properties, and precipitation in various time intervals. In the period 2005-2014, 48 damaging flash flood events occurred in the target area and caused more than 3500 fire service operations in flooded properties. Most of the events are associated with maximum accumulated rainfall of more than 20 mm in 24 h and 3 mm in 10 min. However, the flash flood impact intensity, as measured by the number of the fire service operations per event, increases significantly above the levels of 60 mm in 24 h and 10 mm in 10 min. Secondly, graphs of rainfall intensity versus duration are developed for 15 sub-areas of Attica in order to define rainfall intensity thresholds for flood triggering at a more local level. It is shown that conclusions regarding the reliability of the estimated thresholds should take into account the representativity of the rain gauges, which is determined by the local network's density, the gauges' location and record length.
Over the past several decades, flash floods that occurred in Attica, Greece, caused serious property and infrastructure damages, disruptions in economic and social activities, and human fatalities. This paper investigated the link between rainfall and flash flood impact during the catastrophic event that affected Attica on 22 October 2015, while also addressing human risk perception and behavior as a response to flash floods. The methodology included the analysis of the space–time correlation of rainfall with the citizens’ calls to the emergency fire services for help, and the statistical analysis of people’s responses to an online behavioral survey. The results designated critical rainfall thresholds associated with flash flood impact in the four most affected subareas of the Attica region. The impact magnitude was found to be associated with the localized accumulated rainfall. Vulnerability factors, namely, population density, geographical, and environmental features, may have contributed to the differences in the impact magnitudes between the examined subareas. The analysis of the survey’s behavioral responses provided insights into peoples’ risk perception and coping responses relative to the space–time distribution of rainfall. The findings of this study were in agreement with the hypothesis that the more severe the rainfall, the higher peoples’ severity assessment and the intensity of emotional response. Deeper feelings of fear and worry were found to be related to more adjustments to the scheduled activities and travels. Additionally, being alert to the upcoming rainfall risk was found to be related to decreased worry and fear and to fewer changes in scheduled activities.
Climate atlases provide an excellent overview of a region's climate in the form of maps and disclose information about climate change. They constitute a valuable tool for easy access and management of climate information for a wide range of users including scientists, policymakers, resource managers and urban planners. The main aim of this work was the production of high resolution monthly mean air temperature climatology for Greece, determined from a high resolution homogeneous mean temperature dataset. Temperature data were obtained from 52 meteorological stations of the Hellenic National Meteorological Service. High resolution temperature maps were obtained by interpolating the homogenized data. MISH (Meteorological Interpolation based on Surface Homogenized Data), an interpolation method developed for meteorological purposes, was applied twice, once using as topographic model variables the elevation derived from a 90 m digital elevation model (DEM) and the first 15 AURELHY (Analyse Utilisant le Relief pour les Bésoins de l'Hydrométéorologie) principal components, and then using some additional model variables besides the elevation and the 15 AURELHY principal components: latitude, incoming solar irradiance, Euclidean distance from the coastline and land to sea percentage. The spatial interpolation of monthly mean temperature was performed with a 0.5 ′ resolution (∼730 m at 38 ∘ N). The results showed that modelling with only the AURELHY variables is not sufficient and the use of additional model variables is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.