Breath-hold diving is an activity that humans have engaged in since antiquity to forage for resources, provide sustenance and to support military campaigns. In modern times, breath-hold diving continues to gain popularity and recognition as both a competitive and recreational sport. The continued progression of world records is somewhat remarkable, particularly given the extreme hypoxaemic and hypercapnic conditions, and hydrostatic pressures these athletes endure. However, there is abundant literature to suggest a large inter-individual variation in the apnoeic capabilities that is thus far not fully understood. In this review, we explore developments in apnoea physiology and delineate the traits and mechanisms that potentially underpin this variation. In addition, we sought to highlight the physiological (mal)adaptations associated with consistent breath-hold training. Breath-hold divers (BHDs) are evidenced to exhibit a more pronounced diving-response than non-divers, while elite BHDs (EBHDs) also display beneficial adaptations in both blood and skeletal muscle. Importantly, these physiological characteristics are documented to be primarily influenced by training-induced stimuli. BHDs are exposed to unique physiological and environmental stressors, and as such possess an ability to withstand acute cerebrovascular and neuronal strains. Whether these characteristics are also a result of training-induced adaptations or genetic predisposition is less certain. Although the long-term effects of regular breath-hold diving activity are yet to be holistically established, preliminary evidence has posed considerations for cognitive, neurological, renal and bone health in BHDs. These areas should be explored further in longitudinal studies to more confidently ascertain the long-term health implications of extreme breath-holding activity.
Splenic contractions occur in response to apnoea-induced hypoxia with and without facial water immersion. However, the splenic responses to a series of static (STA) or dynamic (DYN) apnoeas with whole-body water immersion in non-divers (NDs) and elite breath-hold divers (EBHDs) are unknown. EBHD (n = 8), ND (n = 10) and control participants (n = 8) were recruited. EBHD and ND performed a series of five maximal DYN or STA on separate occasions. Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal variation on splenic volume and haematology. Heart rate (HR) and peripheral oxygen saturation (SpO 2) were monitored for 30 s after each apnoea. Pre-and post-apnoeic splenic volumes were quantified ultrasonically, and blood samples were drawn for haematology. For EBHD and ND end-apnoeic HR was higher (P < 0.001) and SpO 2 was lower in DYN (P = 0.024) versus STA. EBHD attained lower end-apnoeic SpO 2 during DYN and STA than NDs (P < 0.001). Splenic contractions occurred following DYN (EBHD, −47 ± 6%; ND, −37 ± 4%; P < 0.001) and STA (EBHD, −26 ± 4%; ND, −26 ± 8%; P < 0.01). DYN-associated splenic contractions were greater than STA in EBHD only (P = 0.042). Haemoglobin concentrations were higher following DYN only (EBHD, +5 ± 8g/L , +4 ± 2%; ND, +8 ± 3 g/L , +4.9 ± 3%; P = 0.019). Haematocrit remained unchanged after each protocol. There were no between group differences in post-apnoeic splenic volume or haematology. In both groups, splenic contractions occurred in response to STA and DYN when combined with whole-body immersion. DYN apnoeas, were effective at increasing haemoglobin concentrations but not STA apnoeas. Thus, the magnitude of the splenic response relates to the hypoxemic stress encountered during apnoeic epochs.
PurposeSerum erythropoietin (EPO) concentration is increased following static apnoea-induced hypoxia. However, the acute erythropoietic responses to a series of dynamic apnoeas in non-divers (ND) or elite breath-hold divers (EBHD) are unknown.MethodsParticipants were stratified into EBHD (n = 8), ND (n = 10) and control (n = 8) groups. On two separate occasions, EBHD and ND performed a series of five maximal dynamic apnoeas (DYN) or two sets of five maximal static apnoeas (STA). Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal variation on EPO. Peripheral oxygen saturation (SpO2) levels were monitored up to 30 s post each maximal effort. Blood samples were collected at 30, 90, and 180 min after each protocol for EPO, haemoglobin and haematocrit concentrations.ResultsNo between group differences were observed at baseline (p > 0.05). For EBHD and ND, mean end-apnoea SpO2 was lower in DYN (EBHD, 62 ± 10%, p = 0.024; ND, 85 ± 6%; p = 0.020) than STA (EBHD, 76 ± 7%; ND, 96 ± 1%) and control (98 ± 1%) protocols. EBHD attained lower end-apnoeic SpO2 during DYN and STA than ND (p < 0.001). Serum EPO increased from baseline following the DYN protocol in EBHD only (EBHD, p < 0.001; ND, p = 0.622). EBHD EPO increased from baseline (6.85 ± 0.9mlU/mL) by 60% at 30 min (10.82 ± 2.5mlU/mL, p = 0.017) and 63% at 180 min (10.87 ± 2.1mlU/mL, p = 0.024). Serum EPO did not change after the STA (EBHD, p = 0.534; ND, p = 0.850) and STE (p = 0.056) protocols. There was a significant negative correlation (r = − 0.49, p = 0.003) between end-apnoeic SpO2 and peak post-apnoeic serum EPO concentrations.ConclusionsThe novel findings demonstrate that circulating EPO is only increased after DYN in EBHD. This may relate to the greater hypoxemia achieved by EBHD during the DYN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.