A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation.
Video of the ocean surface is used as a means for estimating the sea state. Time series of pixel intensity values are given as input to a method that uses the Kalman filter and the least squares approximate solution for estimating the uncalibrated video amplitude spectrum. A method is proposed for scaling this spectrum to metres with the use of an empirical model of the ocean. The significant wave height is estimated from the calibrated video amplitude spectrum. The results are tested against two sets of video data, and buoy measurements in both cases are solely used for indicating the true state. For significant wave height values between 0.5 and 3.6 m, the maximum observed value of root mean square error is 0.37 m and of mean absolute percentage error 16%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.