This version is available at https://strathprints.strath.ac.uk/42979/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Abstract: Recent International Maritime Organization (IMO) decisions with respect to measures to reduce the emissions from maritime greenhouse gases (GHGs) suggest that the collaboration of all major stakeholders of shipbuilding and ship operations is required to address this complex techno-economical and highly political problem efficiently. This calls eventually for the development of proper design, operational knowledge, and assessment tools for the energy-efficient design and operation of ships, as suggested by the Second IMO GHG Study (2009). This type of coordination of the efforts of many maritime stakeholders, with often conflicting professional interests but ultimately commonly aiming at optimal ship design and operation solutions, has been addressed within a methodology developed in the EU-funded Logistics-Based (LOGBASED) Design Project (2004)(2005)(2006)(2007). Based on the knowledge base developed within this project, a new parametric design software tool (PDT) has been developed by the National Technical University of Athens, Ship Design Laboratory (NTUA-SDL), for implementing an energy efficiency design and management procedure. The PDT is an integral part of an earlier developed holistic ship design optimization approach by NTUA-SDL that addresses the multi-objective ship design optimization problem. It provides Pareto-optimum solutions and a complete mapping of the design space in a comprehensive way for the final assessment and decision by all the involved stakeholders. The application of the tool to the design of a large oil tanker and alternatively to container ships is elaborated in the presented paper.
Purpose The optimization of investment portfolios is a topic of major importance in financial decision making, with many relevant models available in the relevant literature. The purpose of this paper is to perform a thorough comparative assessment of different bi-objective models as well as multi-objective one, in terms of the performance and robustness of the whole set of Pareto optimal portfolios. Design/methodology/approach In this study, three bi-objective models are considered (mean-variance (MV), mean absolute deviation, conditional value-at-risk (CVaR)), as well as a multi-objective model. An extensive comparison is performed using data from the Standard and Poor’s 500 index, over the period 2005–2016, through a rolling-window testing scheme. The results are analyzed using novel performance indicators representing the deviations between historical (estimated) efficient frontiers, actual out-of-sample efficient frontiers and realized out-of-sample portfolio results. Findings The obtained results indicate that the well-known MV model provides quite robust results compared to other bi-objective optimization models. On the other hand, the CVaR model appears to be the least robust model. The multi-objective approach offers results which are well balanced and quite competitive against simpler bi-objective models, in terms of out-of-sample performance. Originality/value This is the first comparative study of portfolio optimization models that examines the performance of the whole set of efficient portfolios, proposing analytical ways to assess their stability and robustness over time. Moreover, an extensive out-of-sample testing of a multi-objective portfolio optimization model is performed, through a rolling-window scheme, in contrast static results in prior works. The insights derived from the obtained results could be used to design improved and more robust portfolio optimization models, focusing on a multi-objective setting.
The optimization of investment portfolios is a topic of major importance in financial decision making, and many relevant models can be found in the literature. These models extend the traditional mean-variance framework using a variety of other risk-return measures. Existing comparative studies have adopted a rather restrictive approach, focusing solely on the minimum risk portfolio without considering the whole set of efficient portfolios, which are also relevant for investors. This chapter focuses on the performance of the whole efficient set. To this end, the authors examine the out-of-sample robustness of efficient portfolios derived by popular optimization models, namely the traditional mean-variance model, mean-absolute deviation, conditional value at risk, and a multi-objective model. Tests are conducted using data for S&P 500 stocks over the period 2005-2016. The results are analyzed through novel performance indicators representing the deviations between historical (estimated) efficient frontiers, actual out-of-sample efficient frontiers, and realized out-of-sample portfolio results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.