The advent of powerful edge devices and AI algorithms has already revolutionized many terrestrial applications; however, for both technical and historical reasons, the space industry is still striving to adopt these key enabling technologies in new mission concepts. In this context, the current work evaluates an heterogeneous multi-core system-on-chip processor for use on-board future spacecraft to support novel, computationally demanding digital signal processors and AI functionalities. Given the importance of low power consumption in satellites, we consider the
Intel Movidius Myriad2
system-on-chip and focus on SW development and performance aspects. We design a methodology and framework to accommodate efficient partitioning, mapping, parallelization, code optimization, and tuning of complex algorithms. Furthermore, we propose an avionics architecture combining this commercial off-the-shelf chip with a field programmable gate array device to facilitate, among others, interfacing with traditional space instruments via SpaceWire transcoding. We prototype our architecture in the lab targeting vision-based navigation tasks. We implement a representative computer vision pipeline to track the 6D pose of ENVISAT using megapixel images during hypothetical spacecraft proximity operations. Overall, we achieve 2.6 to 4.9 FPS with only 0.8 to 1.1 W on
Myriad2
, i.e., 10-fold acceleration versus modern rad-hard processors. Based on the results, we assess various benefits of utilizing
Myriad2
instead of conventional field programmable gate arrays and CPUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.