Aims/hypothesis Empagliflozin (EMPA), an inhibitor of the renal sodium-glucose cotransporter (SGLT) 2, reduces the risk of cardiovascular death in patients with type 2 diabetes. The underlying mechanism of this effect is unknown. ] m , through impairment of myocardial NHE flux, independent of SGLT2 activity.
Aims/hypothesis Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) constitute a novel class of glucose-lowering (type 2) kidney-targeted agents. We recently reported that the SGLT2i empagliflozin (EMPA) reduced cardiac cytosolic Na þ ([Na þ ] c ) and cytosolic Ca 2þ ([Ca 2þ ] c ) concentrations through inhibition of Na þ /H þ exchanger (NHE). Here, we examine (1) whether the SGLT2i dapagliflozin (DAPA) and canagliflozin (CANA) also inhibit NHE and reduce [Na þ ] c ; (2) a structural model for the interaction of SGLT2i to NHE; (3) to what extent SGLT2i affect the haemodynamic and metabolic performance of isolated hearts of healthy mice. Methods Cardiac NHE activity and [Na þ ] c in mouse cardiomyocytes were measured in the presence of clinically relevant concentrations of EMPA (1 μmol/l), DAPA (1 μmol/l), CANA (3 μmol/l) or vehicle. NHE docking simulation studies were applied to explore potential binding sites for SGTL2i. Constant-flow Langendorff-perfused mouse hearts were subjected to SGLT2i for 30 min, and cardiovascular function, O 2 consumption and energetics (phosphocreatine (PCr)/ATP) were determined. Results EMPA, DAPA and CANA inhibited NHE activity (measured through low pH recovery after NH 4 þ pulse: EMPA 6.69 ± 0.09, DAPA 6.77 ± 0.12 and CANA 6.80 ± 0.18 vs vehicle 7.09 ± 0.09; p < 0.001 for all three comparisons) and reduced [Na þ ] c (in mmol/l: EMPA 10.0 ± 0.5, DAPA 10.7 ± 0.7 and CANA 11.0 ± 0.9 vs vehicle 12.7 ± 0.7; p < 0.001). Docking studies provided high binding affinity of all three SGLT2i with the extracellular Na þ -binding site of NHE. EMPA and CANA, but not DAPA, induced coronary vasodilation of the intact heart. PCr/ATP remained unaffected. Conclusions/interpretation EMPA, DAPA and CANA directly inhibit cardiac NHE flux and reduce [Na þ ] c , possibly by binding with the Na þ -binding site of NHE-1. Furthermore, EMPA and CANA affect the healthy heart by inducing vasodilation. The [Na þ ] c -lowering class effect of SGLT2i is a potential approach to combat elevated [Na þ ] c that is known to occur in heart failure and diabetes.
The congenital long-QT syndrome (LQT3) and the Brugada syndrome are distinct, life-threatening rhythm disorders linked to autosomal dominant mutations in SCN5A, the gene encoding the human cardiac Na(+) channel. It is believed that these two syndromes result from opposite molecular effects: LQT3 mutations induce a gain of function, whereas Brugada syndrome mutations reduce Na(+) channel function. Paradoxically, an inherited C-terminal SCN5A mutation causes affected individuals to manifest electrocardiographic features of both syndromes: QT-interval prolongation (LQT3) at slow heart rates and distinctive ST-segment elevations (Brugada syndrome) with exercise. In the present study, we show that the insertion of the amino acid 1795insD has opposite effects on two distinct kinetic components of Na(+) channel gating (fast and slow inactivation) that render unique, simultaneous effects on cardiac excitability. The mutation disrupts fast inactivation, causing sustained Na(+) current throughout the action potential plateau and prolonging cardiac repolarization at slow heart rates. At the same time, 1795insD augments slow inactivation, delaying recovery of Na(+) channel availability between stimuli and reducing the Na(+) current at rapid heart rates. Our findings reveal a novel molecular mechanism for the Brugada syndrome and identify a new dual mechanism whereby single SCN5A mutations may evoke multiple cardiac arrhythmia syndromes by influencing diverse components of Na(+) channel gating function. The full text of this article is available at http://www.circresaha.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.