Although their contribution to host defense against extracellular infections has been well defined, IL-17 and Th17 are generally thought to have limited impact on intracellular infections. In this study, we investigated the role and mechanisms of IL-17/Th17 in host defense against Chlamydia muridarum, an obligate intracellular bacterium, lung infection. Our data showed rapid increase in IL-17 production and expansion of Th17 cells following C. muridarum infection and significant detrimental impact of in vivo IL-17 neutralization by anti-IL-17 mAb on disease course, immune response, and dendritic cell (DC) function. Specifically, IL-17-neutralized mice exhibited significantly greater body weight loss, higher organism growth, and much more severe pathological changes in the lung compared with sham-treated control mice. Immunological analysis showed that IL-17 neutralization significantly reduced Chlamydia-specific Th1 responses, but increased Th2 responses. Interestingly, the DC isolated from IL-17-neutralized mice showed lower CD40 and MHC II expression and IL-12 production, but higher IL-10 production compared with those from sham-treated mice. In two DC-T cell coculture systems, DC isolated from IL-17-neutralized mice induced higher IL-4, but lower IFN-γ production by Ag-specific T cells than those from sham-treated mice in cell priming and reaction settings. Adoptive transfer of DC isolated from IL-17-neutralized mice, unlike those from sham-treated mice, failed to protect the recipients against challenge infection. These findings provide in vivo evidence that IL-17/Th17 plays an important role in host defense against intracellular bacterial infection, and suggest that IL-17/Th17 can promote type 1 T cell immunity through modulating DC function.
Type I IFNs (IFNIs) have pleiotropic functions in regulating host innate and adaptive immune responses to pathogens. To elucidate the role of IFNIs in host resistance to chlamydial infection in vivo, we compared IFN-α/β receptor knockout (IFNAR−/−) and wild-type control mice in susceptibility to Chlamydia trachomatis mouse pneumonitis (Chlamydia muridarum) lung infection. We found that the IFNAR−/− mice were significantly more resistant to C. muridarum infection showing less bacterial burden and bodyweight loss, and milder pathological changes. However, IFN-γ response, which is believed to be critical in host defense against chlamydial infection, was similar between the wild-type and IFNAR−/− mice. More importantly, TUNEL analysis showed less macrophage apoptosis in IFNAR−/− mice, which was consistent with lower expressions of IFNI-induced apoptotic factors, TRAIL, Daxx, and PKR. Furthermore, depletion of lung macrophages with dichloromethylene diphosphonate-liposome significantly increased the susceptibility of the IFNAR−/− mice to C. muridarum, confirming the importance of macrophages. Overall, the data indicate that IFNIs play a promoting role in C. muridarum lung infection, largely through increase of local macrophage apoptosis.
We investigated the role of NKT cells in immunity to Chlamydia pneumoniae and Chlamydia muridarum infections using a combination of knockout mice and specific cellular activation approaches. The NKT-deficient mice showed exacerbated susceptibility to C. pneumoniae infection, but more resistance to C. muridarum infection. Activation of NKT reduced C. pneumoniae in vivo growth, but enhanced C. muridarum infection. Cellular analysis of invariant NKT cells revealed distinct cytokine patterns following C. pneumoniae and C. muridarum infections, i.e., predominant IFN-γ in the former, while predominant IL-4 in the latter. The cytokine patterns of CD4+ and CD8+ T cells matched those of NKT cells. Our data provide in vivo evidence for a functionally diverse role of NKT cells in immune response to two intracellular bacterial pathogens. These results suggest that distinct NKT subsets are induced by even biologically closely related pathogens, thus leading to differential adaptive immune response and infection outcomes.
Our results provide direct evidence of the critical role of NKT activation in the functional modulation of DC for the development of protective immunity in a clinically relevant respiratory infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.