BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg − 1 ). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from − 9 to 400 mEq kg − 1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, − 50 to 0), median (M-dEB, 200-250) and high . Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 • C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl− ) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities.
The shift towards higher inclusion of vegetable oils (VOs) in aquafeeds has resulted in major changes in dietary fatty acid composition, especially increased amounts of monounsaturated fatty acids (MUFAs) and decreased polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs). However, little is known about how this change in fatty acid (FA) profile affects the intracellular fate of these fatty acids in the intestinal cells. To investigate this topic, we used the rainbow trout intestinal epithelial cell line (RTgutGC) as an in vitro model. The cells were incubated with either palmitic acid (16:0, PA), oleic acid (18:1n-9, OA), or arachidonic acid (20:4n-6, ARA), to represent the SFA, MUFA, and PUFA, respectively. In all experiments, the RTgutGC were incubated with either non-labeled or radiolabeled FA (PA, OA, or ARA) for 16 h at 190C. The cells were then analyzed for the occurrence of cytosolic lipid droplets (CLD) with confocal microscopy, transcriptomic analysis (non-labeled FA experiments) and lipid class composition in the cells and serosal media from the basolateral side of the cells (radiolabeled FA experiments). CLD accumulation was higher in RTgutGC exposed to OA compared to cells given PA or ARA. This was coupled with increased volume, diameter, and surface area of CLDs in OA treated cells than with other FAs (PA, ARA). The results from radiolabeled FAs performed on permeable transwell inserts showed that OA increased the triacylglycerides (TAG) synthesis and was primarily stored in the cells in CLDs; whereas a significant amount of ARA was transported as TAG to the basolateral compartment. A significant proportion of free FAs was found to be excreted to the serosal basolateral side by the cells, which was significantly higher for PA and OA than ARA. Although there were clear clusters in differentially expressed genes (DEGs) for each treatment group, results from transcriptomics did not correlate to lipid transport and CLD analysis. Overall, the accumulation of TAG in CLDs was higher for oleic acid (OA) compared to arachidonic acid (ARA) and palmitic acid (PA). To conclude, carbon chain length and saturation level of FA differently regulate their intracellular fate during fatty acid absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.