Lipid nanoparticle (LNP) packaged mRNA vaccines have been deployed against infectious diseases such as COVID-19, yet their structural features remain unclear. Cholesterol, a major constituent within LNPs, contributes to their morphology that influences gene delivery. Herein, we examine the structure of LNPs containing cholesterol derivatives using electron microscopy, differential scanning calorimetry, and membrane fluidity assays. LNPs formulated with C24 alkyl derivatives of cholesterol show a polymorphic shape and various degrees of multilamellarity and lipid partitioning, likely due to phase separation. The addition of methyl and ethyl groups to the C24 alkyl tail of the cholesterol backbone induces multilamellarity (>50% increase compared to cholesterol), while the addition of a double bond induces lipid partitioning (>90% increase compared to cholesterol). LNPs with multilamellar and faceted structures, as well as a lamellar lipid phase, showed higher gene transfection. Unraveling the structure of mRNA-LNPs can enable their rational design toward enhanced gene delivery.
Despite lipid nanoparticles' (LNPs) success in the effective and safe delivery of mRNA vaccines, an inhalationbased mRNA therapy for lung diseases remains challenging. LNPs tend to disintegrate due to shear stress during aerosolization, leading to ineffective delivery. Therefore, LNPs need to remain stable through the process of nebulization and mucus penetration, yet labile enough for endosomal escape. To meet these opposing needs, we utilized PEG lipid to enhance the surficial stability of LNPs with the inclusion of a cholesterol analog, β-sitosterol, to improve endosomal escape. Increased PEG concentrations in LNPs enhanced the shear resistance and mucus penetration, while β-sitosterol provided LNPs with a polyhedral shape, facilitating endosomal escape. The optimized LNPs exhibited a uniform particle distribution, a polyhedral morphology, and a rapid mucosal diffusion with enhanced gene transfection. Inhaled LNPs led to localized protein production in the mouse lung without pulmonary or systemic toxicity. Repeated administration of these LNPs led to sustained protein production in the lungs. Lastly, mRNA encoding the cystic fibrosis transmembrane conductance regulator (CFTR) was delivered after nebulization to a CFTR-deficient animal model, resulting in the pulmonary expression of this therapeutic protein. This study demonstrated the rational design approach for clinical translation of inhalable LNP-based mRNA therapies.
Lipid-based nanoparticles (LNPs) for the delivery of mRNA have jumped to the forefront of non-viral gene delivery. Despite this exciting development, poor endosomal escape after LNP cell entry remains an...
Introduction-Lipid based nanoparticles (LNPs) are clinically successful vectors for hepatic delivery of nucleic acids. These systems are being developed for non-hepatic delivery of mRNA for the treatment of diseases like cystic fibrosis or retinal degeneration as well as infectious diseases. Localized delivery to the lungs requires aerosolization. We hypothesized that structural lipids within LNPs would provide features of integrity which can be tuned for attributes required for efficient hepatic and non-hepatic gene delivery. Herein, we explored whether naturally occurring lipids that originate from the cell membrane of plants and microorganisms enhance mRNA-based gene transfection in vitro and in vivo and whether they assist in maintaining mRNA activity after nebulization. Methods-We substituted DSPC, a structural lipid used in a conventional LNP formulation, to a series of naturally occurring membrane lipids. We measured the effect of these membrane lipids on size, encapsulation efficiency and their impact on transfection efficiency. We further characterized LNPs after nebulization and measured whether they retained their transfection efficiency. Results-One plant-derived structural lipid, DGTS, led to a significant improvement in liver transfection of mRNA. DGTS LNPs had similar transfection ability when administered in the nasal cavity to conventional LNPs. In contrast, we found that DGTS LNPs had reduced transfection efficiency in cells pre-and post-nebulization while maintaining size and encapsulation similar to DSPC LNPs. Conclusions-We found that structural lipids provide differential mRNA-based activities in vitro and in vivo which also depend on the mode of administration. Understanding influence of structural lipids on nanoparticle morphology and structure can lead to engineering potent materials for mRNA-based gene therapy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.