Single stage LLC resonant converters with inherent power factor correction are getting popularity in AC-DC converters due to its reduced size and weight. However, single stage topologies are usually less efficient in regulating the dc bus capacitor voltage pertaining to line and load transients. This paper proposes a multi-level flying capacitor based single stage AC-DC LLC topology to address the issue of voltage balancing of dc-bus capacitor and to reduce the voltage stress of the switching devices. The proposed three-level inverter topology guarantees zero voltage switching, less circulating currents, reduced switching stress and losses. The converter uses bridgeless rectification scheme for better efficiency and the power factor is made nearly unity by operating the source-side inductor in discontinuous current conduction. Variable switching frequency control is used to regulate the output voltage of the converter and pulse width modulation is used to control the dc-bus voltage. This dual control scheme is very effective to keep the dc-bus voltage nearly constant over a wide range of line and load variations. The proposed topology and control scheme have been validated by hardware results on a 250W resistive load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.