In order to model the erosion of a material it is necessary to know the material properties of both the impacting particles as well as the target. In the case of electron beam (EB) physical vapour deposited (PVD) thermal barrier coatings (TBCs) the properties of the columns as opposed to the coating as a whole are important. This is due to the fact that discrete erosion events are on a similar scale as the size of the individual columns. Thus nano * and micro * indentation were used to determine the hardness and the Young's modulus of the columns. However, care had to be taken to ensure that it was the hardness of the columns that was being measured and not the coating as a whole. This paper discusses the differences in the results obtained when using the two different tests and relates them to the interactions between the indent and the columns of the EB PVD TBC microstructure. It was found that individual columns had a hardness of 14 GPa measured using nano indentation, while the hardness of the coating, using micro indentation decreased from 13 to 2.4 GPa as the indentation load increased from 0.1 to 3N. This decrease in hardness was attributed to the interaction between the indenter and a number of adjacent columns and the ability of the columns to move laterally under indentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.