We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12–16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI’s magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57.
Neurocognitive ability is a fundamental readout of brain function, and cognitive deficits are a critical component of neuropsychiatric disorders, yet neurocognition is poorly understood at the molecular level. In the present report, we present the largest genome-wide association studies (GWAS) of cognitive ability to date (N=107,207), and further enhance signal by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with cognitive ability, 34 of which were novel. A total of 350 genes were implicated, and this list showed significant enrichment for genes associated with Mendelian disorders with an intellectual disability phenotype.Competitive pathway analysis of gene results implicated the biological process of neurogenesis, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker; and LY97241, a potassium channel inhibitor. Transcriptome-wide analysis revealed that the implicated genes were strongly expressed in neurons, but not astrocytes or oligodendrocytes, and were more strongly associated with fetal brain expression than adult brain expression. Several tissue-specific gene expression relationships to cognitive ability were observed (for example, DAG1 levels in the hippocampus). Finally, we report novel genetic correlations between cognitive ability and disparate phenotypes such as maternal age at first birth and number of children, as well as several autoimmune disorders.
Failure to replicate findings from previous studies may be due to a lack of statistical power. However, given recent findings by Kent et al. (2002) of association with another polymorphism in the 5HTT gene, we hypothesise that previous positive findings may have arisen by the LPR and VNTR being in linkage disequilibrium with the true susceptibility polymorphism.
4Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to intelligence [3][4][5][6][7] , but much about its genetic underpinnings remains to be discovered. Here, we present the largest genetic association study of intelligence to date (N=279,930), identifying 206 genomic loci (191 novel) and implicating 1,041 genes (963 novel) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and identify 89 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain and specifically in striatal medium spiny neurons and cortical and hippocampal pyramidal neurons.Gene-set analyses implicate pathways related to neurogenesis, neuron differentiation and synaptic structure. We confirm previous strong genetic correlations with several neuropsychiatric disorders, and Mendelian Randomization results suggest protective effects of intelligence for Alzheimer's dementia and ADHD, and bidirectional causation with strong pleiotropy for schizophrenia. These results are a major step forward in understanding the neurobiology of intelligence as well as genetically associated neuropsychiatric traits.We performed a genome wide meta-analysis of 16 independent cohorts totaling 279,930 participants of European ancestry and 9,398,186 genetic variants passing quality control (Online 4.4% had a RegulomeDB 14 score of 1a-1f (Figure 1d), suggesting a regulatory function, and the majority of SNPs (81.6%) were in open chromatin regions 15,16 , as indicated by a minimum chromatin state of 1-7 (Figure 1e). We performed genome-wide gene-based association analysis (GWGAS) using MAGMA 17 (Online Methods). This approach provides aggregate association P-values based on all SNPs in a gene, .ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/184853 doi: bioRxiv preprint first posted online Sep. 6, CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/184853 doi: bioRxiv preprint first posted online Sep. 6, 2017; GWAS META-ANALYSIS OF INTELLIGENCE 8 whereas FUMA annotates individually significant SNPs to genes. GWGAS identified 524 associated genes (467 novel) (Figure 3a; Supplementary Table 13; Supplementary Results 2.4.1), of which 159 were outside of the GWAS risk loci, and 365 were also mapped by FUMA (Figure 3b). In total, 92 genes were implicated by all four strategies (Supplementary Table 14).In gene-set analysis using the GWGAS results (Online Methods), Table 15). Conditional analysis indicated that there were three independent associations, for the neurogenesis, central nervous system neuron differenti...
Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify “druggable” targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.