Protein kinase autophosphorylation of activation segment residues is a common regulatory mechanism in phosphorylation-dependent signalling cascades. However, the molecular mechanisms that guarantee specific and efficient phosphorylation of these sites have not been elucidated. Here, we report on three novel and diverse protein kinase structures that reveal an exchanged activation segment conformation. This dimeric arrangement results in an active kinase conformation in trans, with activation segment phosphorylation sites in close proximity to the active site of the interacting protomer. Analytical ultracentrifugation and chemical cross-linking confirmed the presence of dimers in solution. Consensus substrate sequences for each kinase showed that the identified activation segment autophosphorylation sites are non-consensus substrate sites. Based on the presented structural and functional data, a model for specific activation segment phosphorylation at non-consensus substrate sites is proposed that is likely to be common to other kinases from diverse subfamilies.
Poly(ADP-ribose) polymerase I (PARP1) is a primary DNA damage sensor whose (ADP-ribose) polymerase activity is acutely regulated by interaction with DNA breaks. Upon activation at sites of DNA damage, PARP1 modifies itself and other proteins by covalent addition of long branched polymers of ADP-ribose, which in turn recruit downstream DNA repair and chromatin remodelling factors. PARP1 recognizes DNA damage through its N-terminal DNA-binding domain (DBD), which consists of a tandem repeat of an unusual zinc-finger (ZnF) domain. We have now determined the crystal structure of the human PARP1-DBD bound to a DNA break. Along with functional analysis of PARP1 recruitment to sites of DNA damage in vivo, the structure reveals a dimeric assembly whereby ZnF1 and ZnF2 domains from separate PARP1 molecules form a strand-break recognition module that helps activate PARP1 by facilitating its dimerization and consequent trans-automodification.Short-patch repair of DNA single-strand breaks is initiated by poly(ADP-ribose) polymerase-1 (PARP1) -a multi-domain enzyme activated by binding of its N-terminal DNA-binding domain (DBD) to DNA breaks [1][2][3][4][5] . Activated PARP1 utilises NAD + to Correspondence to: Andreas G. Ladurner; Laurence H. Pearl; Antony W. Oliver. AUTHOR CONTRIBUTIONS A.A.E.A. purified the protein, crystallized the complex and collected the X-ray diffraction data; G.T. designed and constructed the PARP1-EGFP constructs and performed the laser DNA damage experiments; M.K. performed the FRAP experiments; P.O.H. engineered the knockdown PARP1 cell line and the wild-type imaging reporter constructs, and performed the in vitro complementation assays; M.H. and R.A.-B. engineered and purified mutant PARP1 constructs; A.G.L. designed the study and analysed the data; L.H.P designed the study, analysed the data and wrote the paper; A.W.O. made the baculovirus constructs, designed the purification protocol, and solved and refined the crystal structure. All authors discussed the results and commented on the manuscript. We have now determined the crystal structure of the DNA-binding domain of PARP1 (PARP1-DBD) encompassing the first two zinc-finger (ZnF) domains, bound to a DNA break. In contrast with structural analysis of the separated domains 22 , we show that DNA binding by both zinc-finger domains is essential to damage recruitment in vivo, and that ZnF1 and ZnF2 domains from separate PARP1 molecules act as a functional unit to generate a dimeric binding module that specifically recognizes the single-strand / double-strand transition at a recessed DNA break. Mutational analysis in vitro and in cells demonstrates the functional requirement for zinc-finger dimerisation and reveals a mechanism for bringing two PARP1 molecules into close proximity at a DNA break as a prerequisite for transmodification. RESULTS Structure of the PARP1-DBD -DNA ComplexAn N-terminal segment of human PARP1 (residues 5-202) was expressed in insect cells and purified by column chromatography. Screening with a range of DNA molecules...
Cyclin-dependent kinases (CDKs) play crucial roles in promoting DNA replication and preventing rereplication in eukaryotic cells [1-4]. In budding yeast, CDKs promote DNA replication by phosphorylating two proteins, Sld2 and Sld3, which generates binding sites for pairs of BRCT repeats (breast cancer gene 1 [BRCA1] C terminal repeats) in the Dpb11 protein [5, 6]. The Sld3-Dpb11-Sld2 complex generated by CDK phosphorylation is required for the assembly and activation of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase. In response to DNA replication stress, the interaction between Sld3 and Dpb11 is blocked by the checkpoint kinase Rad53 [7], which prevents late origin firing [7, 8]. Here we show that the two key CDK sites in Sld3 are conserved in the human Sld3-related protein Treslin/ticrr and are essential for DNA replication. Moreover, phosphorylation of these two sites mediates interaction with the orthologous pair of BRCT repeats in the human Dpb11 ortholog, TopBP1. Finally, we show that DNA replication stress prevents the interaction between Treslin/ticrr and TopBP1 via the Chk1 checkpoint kinase. Our results indicate that Treslin/ticrr is a genuine ortholog of Sld3 and that the Sld3-Dpb11 interaction has remained a critical nexus of S phase regulation through eukaryotic evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.