Chemokines and their G-protein-coupled receptors play a diverse role in immune defence by controlling the migration, activation and survival of immune cells. They are also involved in viral entry, tumour growth and metastasis and hence are important drug targets in a wide range of diseases. Despite very significant efforts by the pharmaceutical industry to develop drugs, with over 50 small-molecule drugs directed at the family entering clinical development, only two compounds have reached the market: maraviroc (CCR5) for HIV infection and plerixafor (CXCR4) for stem-cell mobilization. The high failure rate may in part be due to limited understanding of the mechanism of action of chemokine antagonists and an inability to optimize compounds in the absence of structural information. CC chemokine receptor type 9 (CCR9) activation by CCL25 plays a key role in leukocyte recruitment to the gut and represents a therapeutic target in inflammatory bowel disease. The selective CCR9 antagonist vercirnon progressed to phase 3 clinical trials in Crohn's disease but efficacy was limited, with the need for very high doses to block receptor activation. Here we report the crystal structure of the CCR9 receptor in complex with vercirnon at 2.8 Å resolution. Remarkably, vercirnon binds to the intracellular side of the receptor, exerting allosteric antagonism and preventing G-protein coupling. This binding site explains the need for relatively lipophilic ligands and describes another example of an allosteric site on G-protein-coupled receptors that can be targeted for drug design, not only at CCR9, but potentially extending to other chemokine receptors.
Activators of bacterial σ 54 -RNA polymerase holoenzyme are mechanochemical proteins that use ATP hydrolysis to activate transcription. We have determined a 20 Å resolution structure of an activator, PspF , bound to an ATP transition state analog (ADP.AlF x ), in complex with its basal factor σ 54 by cryo-electron microscopy. By fitting the crystal structure of apo PspF at 1.75 Å into the EM map we identify two loops involved in binding σ 54 . By comparing enhancerbinding structures in different nucleotide states and mutational analysis, we propose nucleotide dependent conformational changes that free the loops for association with σ 54 .Gene expression is regulated at the level of RNA polymerase (RNAP) activity. Bacterial RNAP containing the σ 54 factor requires specialized activator proteins, referred to as bacterial Enhancer-Binding Proteins (EBPs) that interact with the basal transcription complex from remote DNA sites by DNA looping (1-4). EBPs bind Upstream Activating Sequences (UAS) via their C-terminal DNA-binding domains and form higher order oligomers that use ATP-hydrolysis to activate transcription (5, 6). EBPs' central σ 54 -RNAP interacting domain is responsible for ATPase activity and transcription activation (7-9) and belongs to the larger AAA+ (ATPase Associated with various cellular Activities) family of proteins (10-12). Well studied EBPs include Phage Shock protein F (PspF), nitrogen fixation protein A (NifA), nitrogen regulation protein C (NtrC), and C 4 -dicarboxylic acid transport protein D (DctD) (1-3, 7, 13).PspF from Escherichia coli forms a stable oligomeric complex with σ 54 at the point of ATP hydrolysis (14). PspF-ADP.AlF x alters the interaction between σ 54 and promoter DNA similarly to PspF hydrolyzing ATP (15), and was thus deemed a functional hydrolysis intermediate. Activator nucleotide-hydrolysis dependent events couple the chemical energy of hydrolysis to transcriptional activation. The highly conserved and EBP-specific GAFTGA amino acid motif (Fig. S1) is a crucial mechanical determinant for the successful transfer of energy from ATP hydrolysis in EBP to the RNAP holoenzyme via σ 54 's small N-terminal * To whom correspondence should be addressed. xiaodong.zhang@imperial.ac.uk. The lack of structural information has hindered progress towards understanding the basis of this energy transfer process required for transcriptional activation. We now present a structure-function analysis of one such system using: 1) a cryo-electron microscopy reconstruction of PspF's AAA+ domain (residues 1-275, PspF ) in complex with σ 54 at the point of ATP hydrolysis (mimicked by in-situ formed ADP.AlF x ), 2) the crystal structure of apo PspF (1-275) at 1.75 Å resolution, and 3) mutational analysis. Europe PMC Funders GroupNano-electro spray mass spectroscopy of a PspF (1-275) -σ 54 complex with ADP.AlF x established that six monomers of PspF are in complex with a monomeric σ 54 , consistent with AAA+ proteins functioning as hexamers (10, 12).The 3-dimensional reconstruction of the...
Glucagon-like peptide 1 (GLP-1) regulates glucose homeostasis through the control of insulin release from the pancreas. GLP-1 peptide agonists are efficacious drugs for the treatment of diabetes. To gain insight into the molecular mechanism of action of GLP-1 peptides, here we report the crystal structure of the full-length GLP-1 receptor bound to a truncated peptide agonist. The peptide agonist retains an α-helical conformation as it sits deep within the receptor-binding pocket. The arrangement of the transmembrane helices reveals hallmarks of an active conformation similar to that observed in class A receptors. Guided by this structural information, we design peptide agonists with potent in vivo activity in a mouse model of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.