Model Predictive Control is an energy efficient climate control strategy in buildings. However, the effort associated with physics-based modelling seems to prevent widespread application in residential buildings. Applying machine-learning algorithms on historical data promises efficient generation of predictive models for control. In a recent experimental study, Data Predictive Control based on random forests and linear models outperformed a baseline controller during cooling season. In this paper, the approach is benchmarked against hysteresis control and conventional Model Predictive Control based on an RC-network model during heating season. Data Predictive Control shows promising results in terms of energy consumption and thermal comfort.
Model Predictive Control is an energy effcient climate control strategy in buildings. However, the effort associated with physics-based modelling seems to prevent widespread application in residential buildings. Applying machine learning algorithms on historical data promises efficient generation of predictive models for control. In a recent experimental study, Data Predictive Control based on random forests and linear models outperformed a baseline controller during cooling season. In this paper, the approach is benchmarked against hysteresis control and conventional Model Predictive Control based on an RC-network model during heating season. Data Predictive Control shows promising results in terms of energy consumption and thermal comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.