Tobacco smoke is a toxic and carcinogenic mixture of more than 5,000 chemicals. The present article provides a list of 98 hazardous smoke components, based on an extensive literature search for known smoke components and their human health inhalation risks. An electronic database of smoke components containing more than 2,200 entries was generated. Emission levels in mainstream smoke have been found for 542 of the components and a human inhalation risk value for 98 components. As components with potential carcinogenic, cardiovascular and respiratory effects have been included, the three major smoke-related causes of death are all covered by the list. Given that the currently used Hoffmann list of hazardous smoke components is based on data from the 1990s and only includes carcinogens, it is recommended that the current list of 98 hazardous components is used for regulatory purposes instead. To enable risk assessment of components not covered by this list, thresholds of toxicological concern (TTC) have been established from the inhalation risk values found: 0.0018 μg day−1 for all risks, and 1.2 μg day−1 for all risks excluding carcinogenicity, the latter being similar to previously reported inhalation TTCs.
The well-known correlation between the hydrophobicity of narcotic chemicals and the exposure concentration needed to produce an effect indicates that a lipid phase in the aquatic organism is the most likely target. The molar concentration in aquatic organisms at death is found to be approximately constant for different narcotic chemicals, varying from 2 to 8 mmol/kg organism. Because the proportion of lipid is known, the lethal in vivo membrane burden can be calculated to be 40 to 160 mmol/kg lipid. The exact mechanism underlying narcosis is still unknown. However, disturbance by narcotic chemicals in model membrane systems has been investigated, attention having been paid to disturbance of phospholipids and proteins, and of the interaction between the two groups. Model membrane burdens of different chemicals have been shown to be approximately constant for a particular effect. Different effects are found at different membrane concentrations. In the present review, the toxicity of narcotic chemicals to aquatic organisms is discussed, the possible mechanisms underlying narcosis are reviewed, and a comparison is made between membrane burdens that are lethal in vivo and membrane burdens that cause an effect in in vitro systems.
Drug policy makers continuously face a changing pattern of drug use, i.e. new drugs appear on the market, the popularity of certain drugs changes or drugs are used in another way or another combination. For legislative purposes, drugs have mostly been classified according to their addictive potency. Such classifications, however, lack a scientific basis. The present study describes the results of a risk assessment study where 19 recreational drugs (17 illicit drugs plus alcohol and tobacco) used in the Netherlands have been ranked by a Dutch expert panel according to their harm based on the scientific state of the art. The study applies a similar approach as recently applied by Nutt et al. [Lancet 2007;369:1047–1053], so that the results of both studies could be compared. The harm indicators scored are acute and chronic toxicity, addictive potency and social harm. The aim of this study is to evaluate whether the legal classification of drugs in the Netherlands corresponds with the ranking of the drugs according to their science-based ranking of harm. Based on the results, recommendations are formulated about the legal classification of recreational drugs at national and international level which serves a rational approach for drug control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.