The statistical characterization of the measurement errors of a phasor measurement unit (PMU) is currently receiving considerable interest in the power systems community. This paper focuses on the characteristics of the errors in magnitude and angle measurements introduced only by the PMU device (called random errors in this paper), during ambient conditions, using a high-precision calibrator. The experimental results indicate that the random errors follow a non-Gaussian distribution. They also show that the M-class and P-class PMUs have distinct error characteristics. The results of this analysis will help researchers design algorithms that account for the non-Gaussian nature of the errors in synchrophasor measurements, thereby improving the practical utility of the said-algorithms in addition to building on precedence for using high-precision calibrators to perform accurate error tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.